Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951039

RESUMO

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind SNARE complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release.Significance Statement We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We use biochemical assays to screen for amino acids of interest in the complexin N-terminus and test these residues for functional relevance in spontaneous and Ca2+-triggered synaptic vesicle exocytosis using electrophysiology assays and site-directed mutagenesis. In addition to identifying crucial residues for clamping spontaneous release and promoting Ca2+-evoked transmission, we identify a single amino acid at position D15 which determines synaptic vesicle priming, a function that was never before attributed to complexin at vertebrate synapses.

2.
J Biol Chem ; 292(20): 8447-8458, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28356353

RESUMO

In budding yeast (Saccharomyces cerevisiae) the multilayered spindle pole body (SPB) is embedded in the nuclear envelope (NE) at fusion sites of the inner and outer nuclear membrane. The SPB is built from 18 different proteins, including the three integral membrane proteins Mps3, Ndc1, and Mps2. These membrane proteins play an essential role in the insertion of the new SPB into the NE. How the huge core structure of the SPB is anchored in the NE has not been investigated thoroughly until now. The present model suggests that the NE protein Mps2 interacts via Bbp1 with Spc29, one of the coiled-coil proteins forming the central plaque of the SPB. To test this model, we purified and reconstituted the Mps2-Bbp1 complex from yeast and incorporated the complex into liposomes. We also demonstrated that Mps2-Bbp1 directly interacts with Mps3 and Ndc1. We then purified Spc29 and reconstituted the ternary Mps2-Bbp1-Spc29 complex, proving that Bbp1 can simultaneously interact with Mps2 and Spc29 and in this way link the central plaque of the SPB to the nuclear envelope. Interestingly, Bbp1 induced oligomerization of Spc29, which may represent an early step in SPB duplication. Together, this analysis provides important insights into the interaction network that inserts the new SPB into the NE and indicates that the Mps2-Bbp1 complex is the central unit of the SPB membrane anchor.


Assuntos
Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Multimerização Proteica/fisiologia , Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Membrana Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/genética
3.
J Neurosci ; 36(47): 11865-11880, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881774

RESUMO

Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al., 2015); two mutations targeted region I (D166A and D166/E170A) and one mutation targeted both (D51/E52/E55/D166A). The final mutation (D186/D193A) targeted C-terminal residues not expected to interact with syt-1. An in vitro assay showed that the region I, region II, and region I+II (D51/E52/E55/D166A) mutants markedly reduced the attachment between syt-1 and t-SNARE-carrying vesicles in the absence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In the presence of PI(4,5)P2, vesicle attachment was unaffected by mutation. When expressed in Snap-25-null mouse autaptic neurons, region I mutations reduced the size of the readily releasable pool of vesicles, whereas the region II mutation reduced vesicular release probability. Combining both in the D51/E52/E55/D166A mutation abrogated evoked release. These data point to a division of labor between region I (vesicle priming) and region II (evoked release). Spontaneous release was disinhibited by region I mutations and found to correlate with defective complexin (Cpx) clamping in an in vitro fusion assay, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Mutation in region II (D51/E52/E55A) also unclamped release, but this effect could be overcome by synaptotagmin overexpression, arguing against an obligatory role in clamping. We conclude that three synaptic release functions of syt-1, vesicle priming, spontaneous release clamping, and evoked release triggering, depend on direct SNARE complex interaction. SIGNIFICANCE STATEMENT: The function of synaptotagmin-1 (syt-1):soluble NSF attachment protein receptor (SNARE) interactions during neurotransmission remains unclear. We mutated SNAP-25 within the recently identified region I and region II of the primary synaptotagmin:SNARE interface. Using in vitro assays and rescue experiments in autaptic neurons, we show that interactions within region II of the primary interface are necessary for synchronized calcium-triggered release, whereas region I is involved in vesicle priming. Spontaneous release was disinhibited by region I mutation and found to correlate with defective complexin (Cpx) clamping in vitro, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Therefore, vesicle priming, clamping spontaneous release, and eliciting evoked release are three different functions of syt-1 that involve different interaction modes with the SNARE complex.


Assuntos
Potenciais de Ação/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Animais , Sítios de Ligação , Sinalização do Cálcio/fisiologia , Feminino , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Ligação Proteica , Relação Estrutura-Atividade , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/genética
5.
J Neurosci ; 35(42): 14172-82, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490858

RESUMO

Synaptotagmin-1 (Syt1) is the principal Ca(2+) sensor for vesicle fusion and is also essential for vesicle docking in chromaffin cells. Docking depends on interactions of the Syt1-C2B domain with the t-SNARE SNAP25/Syntaxin1 complex and/or plasma membrane phospholipids. Here, we investigated the role of the positively charged "bottom" region of the C2B domain, proposed to help crosslink membranes, in vesicle docking and secretion in mouse chromaffin cells and in cell-free assays. We expressed a double mutation shown previously to interfere with lipid mixing between proteoliposomes and with synaptic transmission, Syt1-R398/399Q (RQ), in syt1 null mutant cells. Ultrastructural morphometry revealed that Syt1-RQ fully restored the docking defect observed previously in syt1 null mutant cells, similar to wild type Syt1 (Syt1-wt). Small unilamellar lipid vesicles (SUVs) that contained the v-SNARE Synaptobrevin2 and Syt1-R398/399Q also docked to t-SNARE-containing giant vesicles (GUVs), similar to Syt1-wt. However, unlike Syt1-wt, Syt1-RQ-induced docking was strictly PI(4,5)P2-dependent. Unlike docking, neither synchronized secretion in chromaffin cells nor Ca(2+)-triggered SUV-GUV fusion was restored by the Syt1 mutants. Finally, overexpressing the RQ-mutant in wild type cells produced no effect on either docking or secretion. We conclude that the positively charged bottom region in the C2B domain--and, by inference, Syt1-mediated membrane crosslinking--is required for triggering fusion, but not for docking. Secretory vesicles dock by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. The R398/399 mutations selectively disrupt the latter and hereby help to discriminate protein regions involved in different aspects of Syt1 function in docking and fusion. SIGNIFICANCE STATEMENT: This study provides new insights in how the two opposite sides of the C2B domain of Synaptotagmin-1 participate in secretory vesicle fusion, and in more upstream steps, especially vesicle docking. We show that the "bottom" surface of the C2B domain is required for triggering fusion, but not for docking. Synaptotagmin-1 promotes docking by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. Mutations in the C2B bottom surface (R398/399) selectively disrupt the latter. These mutations help to discriminate protein regions involved in different aspects of Synaptotagmin-1 function in docking and fusion.


Assuntos
Células Cromafins/metabolismo , Mutação/genética , Vesículas Sinápticas/genética , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Células Cromafins/ultraestrutura , Embrião de Mamíferos , Feminino , Masculino , Fusão de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Proteínas SNARE/metabolismo , Via Secretória/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/ultraestrutura
6.
EMBO J ; 31(15): 3270-81, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22705946

RESUMO

Regulated exocytosis requires that the assembly of the basic membrane fusion machinery is temporarily arrested. Synchronized membrane fusion is then caused by a specific trigger--a local rise of the Ca(2+) concentration. Using reconstituted giant unilamellar vesicles (GUVs), we have analysed the role of complexin and membrane-anchored synaptotagmin 1 in arresting and synchronizing fusion by lipid-mixing and cryo-electron microscopy. We find that they mediate the formation and consumption of docked small unilamellar vesicles (SUVs) via the following sequence of events: Synaptotagmin 1 mediates v-SNARE-SUV docking to t-SNARE-GUVs in a Ca(2+)-independent manner. Complexin blocks vesicle consumption, causing accumulation of docked vesicles. Together with synaptotagmin 1, complexin synchronizes and stimulates rapid fusion of accumulated docked vesicles in response to physiological Ca(2+) concentrations. Thus, the reconstituted assay resolves both the stimulatory and inhibitory function of complexin and mimics key aspects of synaptic vesicle fusion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Cálcio/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Humanos , Técnicas In Vitro , Fusão de Membrana/efeitos dos fármacos , Modelos Biológicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Sinaptotagmina I/fisiologia , Fatores de Tempo , Lipossomas Unilamelares/metabolismo
7.
EMBO Rep ; 15(3): 308-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24493260

RESUMO

Synaptic vesicles fuse with the plasma membrane in response to Ca(2+) influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca(2)(+)-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp.


Assuntos
Cálcio/metabolismo , Membrana Celular/ultraestrutura , Fusão de Membrana , Proteínas Munc18/metabolismo , Sinaptotagmina I/metabolismo , Lipossomas Unilamelares/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos
8.
J Biol Chem ; 289(14): 9639-50, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24532794

RESUMO

Munc18-1, a SEC1/Munc18 protein and key regulatory protein in synaptic transmission, can either promote or inhibit SNARE complex assembly. Although the binary inhibitory interaction between Munc18-1 and closed syntaxin 1 is well described, the mechanism of how Munc18-1 stimulates membrane fusion remains elusive. Using a reconstituted assay that resolves vesicle docking, priming, clamping, and fusion during synaptic exocytosis, we show that helix 12 in domain 3a of Munc18-1 stimulates SNAREpin assembly and membrane fusion. A single point mutation (L348R) within helix 12 selectively abolishes VAMP2 binding and the stimulatory function of Munc18-1 in membrane fusion. In contrast, targeting a natural switch site (P335A) at the start of helix 12, which can result in an extended α-helical conformation, further accelerates lipid-mixing. Together with structural modeling, the data suggest that helix 12 provides a folding template for VAMP2, accelerating SNAREpin assembly and membrane fusion. Analogous SEC1/Munc18-SNARE interactions at other transport steps may provide a general mechanism to drive lipid bilayer merger. At the neuronal synapse, Munc18-1 may convert docked synaptic vesicles into a readily releasable pool.


Assuntos
Proteínas Munc18/química , Proteína 2 Associada à Membrana da Vesícula/química , Substituição de Aminoácidos , Animais , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260673

RESUMO

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement: We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.

10.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411501

RESUMO

SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.


Neurons in the brain communicate with one another by passing molecules called neurotransmitters across the synapse connecting them together. Mutations in the machinery that controls neurotransmitter release can lead to epilepsy or developmental delays in early childhood, but how exactly is poorly understood. Neurotransmitter release is primarily controlled by three proteins that join together to form the SNARE complex, and another protein called synaptotagmin-1. This assembly of proteins primes vesicles containing neurotransmitter molecules to be released from the neuron. When calcium ions bind to synaptotagmin-1, this triggers vesicles in this readily releasable pool to then fuse with the cell membrane and secrete their contents into the small gap between the communicating neurons. Mutations associated with epilepsy and developmental delays have been found in all components of this release machinery. Here, Kádková, Murach, Østergaard et al. set out to find how three of these mutations, which are found in a protein in the SNARE complex called SNAP25, lead to aberrant neurotransmitter release. Two of these mutations are located in the interface between the SNARE complex and synaptotagmin-1, while the other is found within the bundle of proteins that make up the SNARE complex. In vitro and ex vivo experiments in mice revealed that the two interface mutations led to defects in vesicle priming, while at the same time bypassing the control by synaptotagmin-1, resulting in vesicles spontaneously fusing with the cell membrane in an unregulated manner. These mutations therefore combine loss-of-function and gain-of-function features. In contrast, the bundle mutation did not impact the number of vesicles in the releasable pool but reduced spontaneous and calcium ion evoked vesicle fusion. This was due to the mutation destabilizing the SNARE complex, which reduced the amount of energy available for merging vesicles to the membrane. These findings reveal how SNAP25 mutations can have different effects on synapse activity, and how these defects disrupt the release of neurotransmitters. This experimental framework could be used to study how other synaptic mutations lead to diseases such as epilepsy. Applying this approach to human neurons and live model organisms may lead to the discovery of new therapeutic targets for epilepsy and delayed development.


Assuntos
Fusão de Membrana , Transmissão Sináptica , Animais , Camundongos , Exocitose , Mutação , Proteínas SNARE/genética
11.
Biol Psychiatry ; 96(2): 125-136, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490366

RESUMO

BACKGROUND: Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS: A cohort of 11 disease-associated and 5 neutral variants (detected in healthy individuals) were tested in 3 cell-free assays and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton X-100 insolubility. PRESR (predicting STXBP1-related disorder), a machine learning algorithm that uses both sequence- and 3-dimensional structure-based features, was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS: Disease-associated variants, but none of the neutral variants, produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS: These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3-dimensional information improve disease prediction. PRESR is a publicly available diagnostic tool.


Assuntos
Proteínas Munc18 , Mutação de Sentido Incorreto , Estabilidade Proteica , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Humanos , Neurônios/metabolismo , Animais , Aprendizado de Máquina , Células HEK293
12.
J Biol Chem ; 287(37): 31041-9, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22810233

RESUMO

Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.


Assuntos
Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animais , Sistema Livre de Células , Camundongos , Proteínas Munc18/genética , Ratos , Proteínas SNARE/genética , Membranas Sinápticas/genética , Vesículas Sinápticas/genética , Sinaptotagmina I/genética
13.
J Biol Chem ; 286(35): 30582-30590, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21730064

RESUMO

Sec1p/Munc18 proteins and SNAP receptors (SNAREs) are key components of the intracellular membrane fusion machinery. Compartment-specific v-SNAREs on a transport vesicle pair with their cognate t-SNAREs on the target membrane and drive lipid bilayer fusion. In a reconstituted assay that dissects the sequential assembly of t-SNARE (syntaxin 1·SNAP-25) and v-/t-SNARE (VAMP2·syntaxin 1·SNAP-25) complexes, and finally measures lipid bilayer merger, we resolved the inhibitory and stimulatory functions of the Sec1p/Munc18 protein Munc18-1 at the molecular level. Inhibition of membrane fusion by Munc18-1 requires a closed conformation of syntaxin 1. Remarkably, the concurrent preincubation of Munc18-1-inhibited syntaxin 1 liposomes with both VAMP2 liposomes and SNAP-25 at low temperature releases the inhibition and effectively stimulates membrane fusion. VAMP8 liposomes can neither release the inhibition nor exert the stimulatory effect, demonstrating the need for a specific Munc18-1/VAMP2 interaction. In addition, Munc18-1 binds to the N-terminal peptide of syntaxin 1, which is obligatory for a robust stimulation of membrane fusion. In contrast, this interaction is neither required for the inhibitory function of Munc18-1 nor for the release of this block. These results indicate that Munc18-1 and the neuronal SNAREs already have the inherent capability to function as a basic stage-specific off/on switch to control membrane fusion.


Assuntos
Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas SNARE/química , Animais , DNA/química , Lipídeos/química , Lipossomos/química , Lipossomos/metabolismo , Modelos Biológicos , Peptídeos/química , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Ratos , Temperatura
14.
Proc Natl Acad Sci U S A ; 106(6): 2001-6, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19179400

RESUMO

Regulated exocytosis requires tight coupling of the membrane fusion machinery to a triggering signal and a fast response time. Complexins are part of this regulation and, together with synaptotagmins, control calcium-dependent exocytosis. Stimulatory and inhibitory functions have been reported for complexins. To test if complexins directly affect membrane fusion, we analyzed the 4 known mammalian complexin isoforms in a reconstituted fusion assay. In contrast to complexin III (CpxIII) and CpxIV, CpxI and CpxII stimulated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-pin assembly and membrane fusion. This stimulatory effect required a preincubation at low temperature and was specific for neuronal t-SNAREs. Stimulation of membrane fusion was lost when the carboxy-terminal domain of CpxI was deleted or serine 115, a putative phosphorylation site, was mutated. Transfer of the carboxy-terminal domain of CpxI to CpxIII resulted in a stimulatory CpxIII-I chimera. Thus, the carboxy-terminal domains of CpxI and CpxII promote the fusion of high-curvature liposomes.


Assuntos
Lipossomos , Fusão de Membrana , Proteínas do Tecido Nervoso/farmacologia , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Lipossomos/química , Estrutura Terciária de Proteína , Proteínas SNARE/farmacologia , Proteína 2 Associada à Membrana da Vesícula/farmacologia
15.
Cell Rep ; 32(3): 107926, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698012

RESUMO

The neuronal protein complexin contains multiple domains that exert clamping and facilitatory functions to tune spontaneous and action potential-triggered synaptic release. We address the clamping mechanism and show that the accessory helix of complexin arrests assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that forms the core machinery of intracellular membrane fusion. In a reconstituted fusion assay, site- and stage-specific photo-cross-linking reveals that, prior to fusion, the complexin accessory helix laterally binds the membrane-proximal C-terminal ends of SNAP25 and VAMP2. Corresponding complexin interface mutants selectively increase spontaneous release of neurotransmitters in living neurons, implying that the accessory helix suppresses final zippering/assembly of the SNARE four-helix bundle by restraining VAMP2 and SNAP25.


Assuntos
Membrana Celular/metabolismo , Exocitose , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Humanos , Luz , Fusão de Membrana , Modelos Biológicos , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
16.
Cell Rep ; 26(9): 2340-2352.e5, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811985

RESUMO

Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.


Assuntos
Proteínas SNARE/química , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Fusão de Membrana , Camundongos , Camundongos Knockout , Modelos Neurológicos , Eletricidade Estática , Sinaptotagmina I/fisiologia
17.
Methods Mol Biol ; 440: 37-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369935

RESUMO

Membrane fusion is fundamental for a broad variety of physiological processes, such as synaptic transmission, fertilization, and viral entry. Intracellular fusion along the secretory and endocytic pathway is mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. When recombinant v- and t-SNAREs are reconstituted into distinct liposome populations, membrane fusion can be monitored by either lipid or content mixing. The in vitro assays use fluorescence dequenching to measure vesicle fusion. The lipid-mixing assay is based on fluorescence resonance energy transfer between the fluorophores 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) and rhodamine, which are covalently coupled to lipids. Fusion of labeled v-SNARE liposomes with unlabeled t-SNARE liposomes increases the distance between NBD and rhodamine, increasing the NBD fluorescence. In the content-mixing assay, the water-soluble fluorophore 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) (pyranine) and its quencher p-Xylene-bis-pyridinium bromide (DPX) are incorporated into v-SNARE vesicles. The fusion of labeled v-SNARE vesicles with unlabeled t-SNARE vesicles dilutes the quencher and thus increases HPTS fluorescence. By controlling the lipid and protein composition, these assays provide important tools to detect fusion intermediates (e.g., hemifusion), and to elucidate the molecular mechanisms that regulate membrane fusion.


Assuntos
Bioensaio , Endocitose , Exocitose , Fusão de Membrana , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Bioensaio/métodos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Humanos , Cinética , Lipossomos/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
18.
Methods Enzymol ; 404: 125-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16413264

RESUMO

A method is described that allows the attachment of COPI vesicles and Golgi membranes to glass slides that can then be analyzed using electron microscopy (EM) and immuno-EM methods. Subpopulations of COPI vesicles can be bound selectively using recombinant golgins. Alternatively, COPI vesicles can be attached to prebound Golgi membranes. Marking these vesicles selectively with biotin allows their site of attachment to be identified.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Complexo de Golgi/fisiologia , Animais , Autoantígenos , Biotinilação , Fracionamento Celular/métodos , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA , Vidro , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana , Ratos , Fatores de Transcrição
19.
Cold Spring Harb Perspect Biol ; 3(10): a005249, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21768609

RESUMO

Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.


Assuntos
Complexo de Golgi/metabolismo , Proteínas SNARE/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Transporte Biológico , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas SNARE/análise , Proteínas SNARE/química , Alinhamento de Sequência , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
20.
FEBS Lett ; 583(14): 2343-8, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19540234

RESUMO

Complexins (Cpxs) and synaptotagmins regulate calcium-dependent exocytosis. A central helix in Cpx confers specific binding to the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) fusion machinery. An accessory helix in the amino-terminal region inhibits membrane fusion by blocking SNAREpin zippering. We now show that an amphipathic helix in the carboxy-terminal region of CpxI binds lipid bilayers and affects SNARE-mediated lipid mixing in a liposome fusion assay. The substitution of a hydrophobic amino acid within the helix by a charged residue abolishes the lipid interaction and the stimulatory effect of CpxI in liposome fusion. In contrast, the introduction of the bulky hydrophobic amino acid tryptophan stimulates lipid binding and liposome fusion. This data shows that local Cpx-lipid interactions can play a role in membrane fusion.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipídeos/química , Lipossomos/metabolismo , Fusão de Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA