Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Electrophoresis ; 45(5-6): 380-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072651

RESUMO

In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2  > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.


Assuntos
Hidrocortisona , Peixe-Zebra , Animais , Hidrocortisona/farmacologia , Larva , Fluxo de Trabalho , Espectrometria de Massas/métodos , Metabolômica/métodos , Eletroforese Capilar/métodos , Mamíferos
2.
Electrophoresis ; 43(18-19): 1814-1821, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560354

RESUMO

The composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage). Metabolomics using NMR spectroscopy, GC-MS, and/or LC-MS has shown to be a useful approach for assessing the origin, authenticity, and quality of various wines. Nonetheless, the use of additional analytical techniques with complementary separation mechanisms may aid in the deeper understanding of wine's metabolic processes. In this study, we demonstrate that CE-MS is a very suitable approach for the efficient profiling of polar ionogenic metabolites in wines. Without using any sample preparation or derivatization, wine was analyzed using a 10-min CE-MS workflow with interday RSD values for 31 polar and charged metabolites below 3.8% and 23% for migration times and peak areas, respectively. The utility of this workflow for the global profiling of polar ionogenic metabolites in wine was evaluated by analyzing different cool-climate Polish wine samples.


Assuntos
Vinho , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Polônia , Vinho/análise
3.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206906

RESUMO

Leishmania survival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with Leishmania amazonensis wild type (La-WT) or arginase knocked out (La-arg-), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile. Macrophages showed specific changes in metabolite abundance upon Leishmania infection, as well as in the absence of parasite-arginase. The absence of L. amazonensis-arginase promoted the regulation of both host and parasite urea cycle, glycine and serine metabolism, ammonia recycling, metabolism of arginine, proline, aspartate, glutamate, spermidine, spermine, methylhistidine, and glutathione metabolism. The increased L-arginine, L-citrulline, L-glutamine, oxidized glutathione, S-adenosylmethionine, N-acetylspermidine, trypanothione disulfide, and trypanothione levels were observed in La-WT-infected C57BL/6-macrophage compared to uninfected. The absence of parasite arginase increased L-arginine, argininic acid, and citrulline levels and reduced ornithine, putrescine, S-adenosylmethionine, glutamic acid, proline, N-glutamyl-alanine, glutamyl-arginine, trypanothione disulfide, and trypanothione when compared to La-WT infected macrophage. Moreover, the absence of parasite arginase leads to an increase in NO production levels and a higher infectivity rate at 4 h of infection. The data presented here show a host-dependent regulation of metabolomic profiles of C57BL/6 macrophages compared to the previously observed BALB/c macrophages infected with L. amazonensis, an important fact due to the dual and contrasting macrophage phenotypes of those mice. In addition, the Leishmania-arginase showed interference with the urea cycle, glycine, and glutathione metabolism during host-pathogen interactions.


Assuntos
Aminoácidos/metabolismo , Interações Hospedeiro-Parasita , Leishmaniose/metabolismo , Macrófagos/metabolismo , Metaboloma , Poliaminas/metabolismo , Animais , Arginase/metabolismo , Células Cultivadas , Leishmania/enzimologia , Leishmania/patogenicidade , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas de Protozoários/metabolismo
4.
Anal Chem ; 92(19): 12891-12899, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32822159

RESUMO

Since l-argininosuccinic acid (ASA) is the characteristic biomarker for the diagnosis of certain diseases, its reliable detection in complex biological samples is necessary to obtain a complete evaluation with greater specificity and accuracy. ASA can undergo intramolecular cyclization, yielding an equilibrium with the resulting cyclic forms, which can predominate under different analytical conditions. In this work, the appearance and transformation of the different forms of ASA have been studied and a strategy for targeted screening analysis of ASA and its cyclic forms using capillary electrophoresis-electrospray ionization-time-of-flight mass spectrometry (CE-ESI-TOF-MS) has been developed. The data and spectra obtained allowed us to gain further insight into accurate identification, concluding that there is a dynamic equilibrium depending on the pH. Moreover, one- and two-dimensional NMR spectroscopy experiments have allowed us to determine the predominant tautomeric structure for the major cyclic ASA derivative, confirming the importance of intramolecular hydrogen bonds.


Assuntos
Ácido Argininossuccínico/síntese química , Ácido Argininossuccínico/urina , Ácido Argininossuccínico/química , Ciclização , Eletroforese Capilar , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Masculino , Conformação Molecular , Espectrometria de Massas por Ionização por Electrospray
5.
Anal Chem ; 92(7): 4848-4857, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32119527

RESUMO

The alteration of modified amino acid (MAA) profiles in biological samples is related to important cellular, physiological, and pathological processes. To achieve the interpretation of their biochemical relevance, it is critical to define their whole chemical spectrum using metabolomic research works. We present a detailed in-source fragmentation (ISF) study based on the mechanisms of the major fragmentation reactions observed of diagnostic ions (DIs) generated in positive electrospray ionization for 57 amino acid standard compounds using capillary electrophoresis coupled with high-resolution mass spectrometry. The DIs presented and our in-house fragment library allowed us to establish a workflow for targeted extraction of MAAs. We present key examples showing successful findings such as the identification of N2-methyl-l-lysine, which provides insight into the lysine methylome. The experimental results presented prove that the use of ISF data, when combined with a thorough study of the fragmentation mechanisms, constitutes an informative source of accurate molecular identity.


Assuntos
Aminoácidos/análise , Eletroforese Capilar , Íons/química , Espectrometria de Massas , Estrutura Molecular
6.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835767

RESUMO

BACKGROUND: Leishmaniases are neglected tropical diseases that are caused by Leishmania, being endemic worldwide. L-arginine is an essential amino acid that is required for polyamines production on mammal cells. During Leishmania infection of macrophages, L-arginine is used by host and parasite arginase to produce polyamines, leading to parasite survival; or, by nitric oxide synthase 2 to produce nitric oxide leading to parasite killing. Here, we determined the metabolomic profile of BALB/c macrophages that were infected with L. amazonensis wild type or with L. amazonensis arginase knockout, correlating the regulation of L-arginine metabolism from both host and parasite. METHODS: The metabolites of infected macrophages were analyzed by capillary electrophoresis coupled with mass spectrometry (CE-MS). The metabolic fingerprints analysis provided the dual profile from the host and parasite. RESULTS: We observed increased levels of proline, glutamic acid, glutamine, L-arginine, ornithine, and putrescine in infected-L. amazonensis wild type macrophages, which indicated that this infection induces the polyamine production. Despite this, we observed reduced levels of ornithine, proline, and trypanothione in infected-L. amazonensis arginase knockout macrophages, indicating that this infection reduces the polyamine production. CONCLUSIONS: The metabolome fingerprint indicated that Leishmania infection alters the L-arginine/polyamines/trypanothione metabolism inside the host cell and the parasite arginase impacts on L-arginine metabolism and polyamine production, defining the infection fate.


Assuntos
Arginina/metabolismo , Leishmania mexicana/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Metabolômica , Animais , Análise Discriminante , Feminino , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas , Metaboloma , Camundongos Endogâmicos BALB C , Parasitos/fisiologia , Prolina/metabolismo
7.
Sci Rep ; 14(1): 20987, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251672

RESUMO

Primary Hyperparathyroidism (PHPT) is characterized by excessive parathormone (PTH) secretion and disrupted calcium homeostasis. Untargeted metabolomics offers a valuable approach to understanding the complex metabolic alterations associated with different diseases, including PHPT. Plasma untargeted metabolomics was applied to investigate the metabolic profiles of PHPT patients compared to a control group. Two complementary liquid-phase separation techniques were employed to comprehensively explore the metabolic landscape in this retrospective, single-center study. The study comprised 28 female patients diagnosed following the current guidelines of PHPT diagnosis and a group of 30 healthy females as a control group. To evaluate their association with PHPT, we identified changes in plasma metabolic profiles in patients with PHPT compared to the control group. The primary outcome measure included detecting plasma metabolites and discriminating PHPT patients from controls. The study unveiled specific metabolic imbalances that may link L-amino acids with peptic ulcer disease, gamma-glutamyls with oxidative stress, and asymmetric dimethylarginine (ADMA) with cardiovascular complications. Several metabolites, such as gamma-glutamyls, caffeine, sex hormones, carnitine, sphingosine-1-phosphate (S-1-P), and steroids, were connected with reduced bone mineral density (BMD). Metabolic profiling identified distinct metabolic patterns between patients with PHPT and healthy controls. These findings provided valuable insights into the pathophysiology of PHPT.


Assuntos
Hiperparatireoidismo Primário , Metabolômica , Humanos , Feminino , Hiperparatireoidismo Primário/sangue , Hiperparatireoidismo Primário/metabolismo , Metabolômica/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Metaboloma , Arginina/sangue , Arginina/metabolismo , Arginina/análogos & derivados , Densidade Óssea , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Estudos de Casos e Controles , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo , Biomarcadores/sangue
8.
Biofactors ; 49(4): 912-927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171157

RESUMO

The liver is the only solid organ capable of regenerating itself to regain 100% of its mass and function after liver injury and/or partial hepatectomy (PH). This exceptional property represents a therapeutic opportunity for severe liver disease patients. However, liver regeneration (LR) might fail due to poorly understood causes. Here, we have investigated the regulation of liver proteome and phosphoproteome at a short time after PH (9 h), to depict a detailed mechanistic background of the early LR phase. Furthermore, we analyzed the dynamic changes of the serum proteome and metabolome of healthy living donor liver transplant (LDLT) donors at different time points after surgery. The molecular profiles from both analyses were then correlated. Insulin and FXR-FGF15/19 signaling were stimulated in mouse liver after PH, leading to the activation of the main intermediary kinases (AKT and ERK). Besides, inhibition of the hippo pathway led to an increased expression of its target genes and of one of its intermediary proteins (14-3-3 protein), contributing to cell proliferation. In association with these processes, metabolic reprogramming coupled to enhanced mitochondrial activity cope for the energy and biosynthetic requirements of LR. In human serum of LDLT donors, we identified 56 proteins and 13 metabolites statistically differential which recapitulate some of the main cellular processes orchestrating LR in its early phase. These results provide mechanisms and protein mediators of LR that might prove useful for the follow-up of the regenerative process in the liver after PH as well as preventing the occurrence of complications associated with liver resection.


Assuntos
Regeneração Hepática , Transplante de Fígado , Camundongos , Animais , Humanos , Regeneração Hepática/genética , Transplante de Fígado/métodos , Proteoma/genética , Proteoma/metabolismo , Doadores Vivos , Fígado/cirurgia , Fígado/metabolismo
9.
Methods Mol Biol ; 2531: 185-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941486

RESUMO

One of the aims of untargeted metabolomics is searching for selective biomarkers of different pathophysiological conditions. Modified amino acids originated from the posttranslational modification of proteins play a key role as potential biomarkers; however, they are very often still classified as unknown after metabolite annotation. We have developed an analytical workflow for the targeted screening of these compounds using CE-ESI-MS. The workflow is based on the in-source fragmentation of molecules that produces diagnostic ions that we have collected in an open-source library. In this chapter, we describe in detail the strategy for the targeted screening of modified amino acids (MAAs), using as an example L-proline and its modified derivatives. We illustrate the strategy with two case studies in human plasma.


Assuntos
Metabolômica , Prolina , Aminoácidos/química , Biomarcadores , Humanos , Plasma/metabolismo
10.
J Chromatogr A ; 1635: 461758, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33302137

RESUMO

Capillary electrophoresis coupled to mass spectrometry is a power tool in untargeted metabolomics studies to analyze charged and polar compounds. However, identification is a challenge due to the variability of migration times and the lack of MS/MS spectra in CE-TOF-MS, the type of instruments most frequently employed. We present here a CE-MS search platform incorporated in CEU Mass Mediator to annotate metabolites with a confidence level L2. For its the development we analyzed 226 compounds using two fragmentor voltages: 100 and 200 V. The information obtained, such as relative migration times (RMT) and in-source fragments, were incorporated into the platform. In addition, we validated the CE-MS search functionality using different types of biological samples such as plasma samples (human, rat, and rabbit), mouse macrophages, and human urine. The RMT tolerance percentage for the search of metabolites has been determined, establishing 5% for all compounds, except for the compounds migrating in the electro-osmotic flow, for which the tolerance should be of 10%. It has also been demonstrated the robustness of the in-source fragmentation, which makes possible the annotation of compounds by means of their fragmentation pattern. As an example, 3-methylhistidine and 1-methilhistidine, whose RMT are very close, have been annotated. Studies of the fragmentation mechanisms of acyl-L-carnitines have shown that in-source fragmentation follows the general fragmentation rules and is a suitable alternative to MS/MS.


Assuntos
Eletroforese Capilar , Metabolômica/métodos , Espectrometria de Massas em Tandem , Animais , Carnitina/análogos & derivados , Carnitina/química , Humanos , Coelhos , Ratos , Fatores de Tempo
11.
J Fungi (Basel) ; 7(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063531

RESUMO

The Aspergillus Metabolome Database is a free online resource to perform metabolite annotation in mass spectrometry studies devoted to the genus Aspergillus. The database was created by retrieving and curating information on 2811 compounds present in 601 different species and subspecies of the genus Aspergillus. A total of 1514 scientific journals where these metabolites are mentioned were added as meta-information linked to their respective compounds in the database. A web service to query the database based on m/z (mass/charge ratio) searches was added to CEU Mass Mediator; these queries can be performed over the Aspergillus database only, or they can also include a user-selectable set of other general metabolomic databases. This functionality is offered via web applications and via RESTful services. Furthermore, the complete content of the database has been made available in .csv files and as a MySQL database to facilitate its integration into third-party tools. To the best of our knowledge, this is the first database and the first service specifically devoted to Aspergillus metabolite annotation based on m/z searches.

12.
Methods Mol Biol ; 2855: 389-423, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39354320

RESUMO

Capillary electrophoresis coupled to mass spectrometry (CE-MS) has emerged as a powerful analytical technique with significant implications for clinical research and diagnostics. The integration of information from CE and MS strengthens confidence in the identification of compounds present in clinical samples. The ability of CE to separate molecules based on their electrophoretic mobility coupled to MS enables the accurate identification and quantification of analytes, even in complex biological matrices such as human plasma.Here, we present a detailed protocol for an untargeted metabolomics study using CE-MS and its application in a study on human plasma from patients suffering Long COVID syndrome. The protocol ranges from sample preparation to biological interpretation, detailing a workflow enabling the analysis of cationic and anionic compounds, metabolite identification, and data processing.


Assuntos
COVID-19 , Eletroforese Capilar , Espectrometria de Massas , Metabolômica , Humanos , Eletroforese Capilar/métodos , Metabolômica/métodos , Espectrometria de Massas/métodos , COVID-19/sangue , COVID-19/diagnóstico , SARS-CoV-2/metabolismo , Plasma/química , Plasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA