Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023245

RESUMO

Deep eutectic solvents (DES) are mixtures of hydrogen bond donors and acceptors that form strongly hydrogen-bonded room temperature liquids. Changing the H-bonding components and their ratios can alter the physicochemical properties of deep eutectic solvents. Recent studies have shown p-toluenesulfonic acid (pTSA) forms room temperature liquids with choline chloride (ChCl) at different molar ratios: 1 : 1, 1 : 2 and 2 : 1 [Rodriguez Rodriguez et al., ACS Sustain. Chem. Eng., 2019, 7(4), 3940]. They also showed that the composition affects the physical properties of these liquids and their ability to dissolve metal oxides. In this work we evaluate the solubility and self-assembly of cationic surfactants alkyltrimethyl ammonium bromides (CnTAB) in these pTSA/ChCl based liquids. CnTABs are insoluble in 1pTSA : 2ChCl, whereas in 1pTSA : 1ChCl and 2pTSA : 1ChCl they form micelles. We characterise CnTAB (n = 12, 14, 16) micelles using small angle neutron scattering and also look at interaction of water with the micelles. These studies help determine the interaction of DES components with the surfactant and the influence of varying pTSA and water ratios on these interactions. This provides potential for controlled surfactant templating and for tuning rheology modification in such systems.

2.
Langmuir ; 39(47): 16776-16784, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37965899

RESUMO

Deep eutectic solvents (DESs) are an emerging class of modern, often "green" solvents with unique properties. Recently, a deep eutectic system based on amphiphilic surfactant N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C12 & C14 sulfobetaine) and (1S)-(+)-10-camphor-sulfonic acid in the molar ratio 1:1.5 has been reported. Nanostructuring can be expected in this DES due to the nature of the components. In this work, we have investigated the native nanostructure in the DES comprising C12-C18 alkyl chain sulfobetaines with camphor sulfonic acid and how it interacts with polar and nonpolar species, water and dodecane, respectively, using small angle neutron scattering. By using contrast variation to highlight the relative position of the solvent components and additives, we can resolve the structure of the solvent and how it changes upon interaction with water and dodecane. Scattering from the neat DES shows structures corresponding to the self-assembly of sulfobetaines; the size of the structure increases as the alkyl chain length of the sulfobetaines increases. Water and dodecane interact, respectively, with the hydrophilic and hydrophobic moieties in the DES structure, primarily the sulfobetaine, thereby swelling and solvating the entire structure. The extent of the shift of the peak position, and the swelling, depend on concentration of the additive. The solution phase organization and the interaction of polar and nonpolar species as observed here, have the potential to affect the ordering of inorganic or polymeric materials grown in such solvents, paving new avenues for templating applications.

3.
J Chem Phys ; 155(8): 084902, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470344

RESUMO

Understanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle formation has only been reported in type III DESs, consisting solely of organic species. In this work, we have explored the self-assembly of cationic surfactant dodecyl trimethylammonium nitrate/bromide (C12TANO3/C12TAB), anionic surfactant sodium dodecyl sulfate (SDS), and non-ionic surfactants hexaethylene glycol monododecyl ether (C12EO6) and octaethylene glycol monohexadecyl ether (C16EO8) in a type IV DES comprising metal salt, cerium (III) nitrate hexahydrate, and a hydrogen bond donor, urea, in the molar ratio 1:3.5. C12TANO3, C12TAB, C12EO6, and C16EO8 form spherical micelles in the DES with the micelle size dependent on both the surfactant alkyl chain length and the head group, whereas SDS forms cylindrical micelles. We hypothesize that the difference in the micelle shape can be explained by counterion stabilization of the SDS headgroup by polycations in the DES compared to the nitrate/bromide anion interaction in the case of cationic surfactants or molecular interaction of the urea and the salting out effect of (CeNO3)3 in the DES on the alkyl chains/polyethoxy headgroup for non-ionic surfactants. These studies deepen our understanding of amphiphile self-assembly in this novel, ionic, and hydrogen-bonding solvent, raising the opportunity to use these structures as liquid crystalline templates to generate porosity in metal oxides (ceria) that can be synthesized using these DESs.

4.
ACS Sustain Chem Eng ; 11(28): 10242-10251, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37476420

RESUMO

This work presents a mechanistic understanding of the synthesis of small (<3 nm) gold nanoparticles in a nontoxic, eco-friendly, and biodegradable eutectic mixture of choline chloride and urea (reline) without the addition of external reducing or stabilization agents. Reline acts as a reducing agent by releasing ammonia (via urea hydrolysis), forming gold nanoparticles even at trace ammonia concentration levels. Reline also affects the speciation of the gold precursor forming gold chloro-complexes, stabilizing Au+ species, leading to an easier reduction and avoiding the otherwise fast disproportionation reaction. Such a capability is however lost in the presence of large amounts of water, where water replaces the chloride ligands in the precursor speciation. In addition, reline acts as a weak stabilizing agent, leading to small particles (<3 nm) and narrow distributions although agglomerates quickly form. Such properties are maintained in the presence of water, indicating that it is linked to the urea stabilization rather than the hydrogen-bonding network. This work has important implications in the field of green synthesis of nanoparticles with small sizes, especially for biomedical and health care applications, due to the nontoxic nature of the components of deep eutectic solvents in contrast to the conventional routes.

5.
J Phys Chem B ; 124(28): 6004-6014, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32551622

RESUMO

Deep eutectic solvents (DES) are potentially greener solvents obtained through the complexation of simple precursors which, among other applications, have been investigated in recent years for their ability to support the self-assembly of amphiphilic molecules. It is crucial to understand the factors which influence surfactant solubility and self-assembly with respect to the interaction of the surfactant molecule with the DES components. In this work, small-angle neutron scattering (SANS) has been used to investigate the micellization of cationic (CnTAB) and anionic (SDS) surfactants in a ternary DES comprising choline chloride, urea, and glycerol, where the hydrogen bond donors are mixed in varying molar ratios. The results show that in each case either globular or rodlike micelles are formed with the degree of elongation being directly dependent on the composition of the DES. It is hypothesized that this composition dependence arises largely from the poor solubility of the counterions in the DES, especially at low glycerol content, leading to a tighter binding of the counterion to the micelle surface and giving rise to micelles with a high aspect ratio. This potential for accurate control over micelle morphology presents unique opportunities for rheology control or to develop templated syntheses of porous materials in DES, utilizing the solvent composition to tailor micelle shape and size, and hence the pore structure of the resulting material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA