Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 437, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698335

RESUMO

BACKGROUND: Liver transplantation is an effective treatment for liver failure. There is a large unmet demand, even as not all donated livers are transplanted. The clinical selection criteria for donor livers based on histopathological evaluation and liver function tests are variable. We integrated transcriptomics and histopathology to characterize donor liver biopsies obtained at the time of organ recovery. We performed RNA sequencing as well as manual and artificial intelligence-based histopathology (10 accepted and 21 rejected for transplantation). RESULTS: We identified two transcriptomically distinct rejected subsets (termed rejected-1 and rejected-2), where rejected-2 exhibited a near-complete transcriptomic overlap with the accepted livers, suggesting acceptability from a molecular standpoint. Liver metabolic functional genes were similarly upregulated, and extracellular matrix genes were similarly downregulated in the accepted and rejected-2 groups compared to rejected-1. The transcriptomic pattern of the rejected-2 subset was enriched for a gene expression signature of graft success post-transplantation. Serum AST, ALT, and total bilirubin levels showed similar overlapping patterns. Additional histopathological filtering identified cases with borderline scores and extensive molecular overlap with accepted donor livers. CONCLUSIONS: Our integrated approach identified a subset of rejected donor livers that are likely suitable for transplantation, demonstrating the potential to expand the pool of transplantable livers.


Assuntos
Perfilação da Expressão Gênica , Transplante de Fígado , Fígado , Doadores de Tecidos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Transcriptoma , Rejeição de Enxerto/genética , Adulto
2.
Ind Eng Chem Res ; 62(5): 2275-2287, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36787103

RESUMO

Recent experimental investigations of liver homeostatic renewal have identified high replication capacity hepatocyte populations as the primary maintainers of liver mass. However, the molecular and cellular processes controlling liver homeostatic renewal remain unknown. To address this problem, we developed and analyzed a mathematical model describing cellular network interactions underlying liver homeostatic renewal. Model simulation results demonstrate that without feedback control, basic homeostatic renewal is not robust to disruptions, leading to tissue loss under persistent/repetitive insults. Consequently, we extended our basic model to incorporate putative regulatory interactions and investigated how such interactions may confer robustness on the homeostatic renewal process. We utilized a Design of Experiments approach to identify the combination of feedback interactions that yields a cell network model of homeostatic renewal capable of maintaining liver mass robustly during persistent/repetitive injury. Simulations of this robust model indicate that repeated injury destabilizes liver homeostasis within several months, which differs from epidemiological observations of a much slower decay of liver function occurring over several years. To address this discrepancy, we extended the model to include feedback control by liver nonparenchymal cells. Simulations and analysis of the final multicellular feedback control network suggest that achieving robust liver homeostatic renewal requires intrinsic stability in a hepatocellular network combined with feedback control by nonparenchymal cells.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37575468

RESUMO

Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.

4.
Metabolites ; 12(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36557195

RESUMO

Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there is no efficacious treatment aiding most patients. AH manifests differently in individuals, with some patients showing debilitating symptoms more so than others. Previous studies showed significant metabolic dysregulation associated with AH. Therefore, we sought to analyze how the activity of metabolic pathways differed in the liver of patients with varying degrees of AH severity. We utilized a genome-scale metabolic modeling approach that allowed for integration of a generic human cellular metabolic model with specific RNA-seq data corresponding to healthy and multiple liver disease states to predict the metabolic fluxes within each disease state. Additionally, we performed a systems-level analysis of the transcriptomic data and predicted metabolic flux data to identify the regulatory and functional differences in liver metabolism with increasing severity of AH. Our results provide unique insights into the sequential dysregulation of the solute transport mechanisms underlying the glutathione metabolic pathway with increasing AH disease severity. We propose targeting of the solute transporters in the glutathione pathway to mimic the flux activity of the healthy liver state as a potential therapeutic intervention for AH.

5.
Front Physiol ; 12: 748962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899380

RESUMO

Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA