Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(15-16): 1039-1050, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561546

RESUMO

The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid and massive reduction in the expression of critical liver genes. Activity of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout adult life.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Redes Reguladoras de Genes , Fígado/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/patologia , Falência Hepática/etiologia , Falência Hepática/patologia , Masculino , Camundongos , Nucleossomos
2.
Diabetologia ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240351

RESUMO

AIMS/HYPOTHESIS: Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS: To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS: The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION: These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY: Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.

3.
Development ; 148(6)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33653874

RESUMO

To gain a deeper understanding of pancreatic ß-cell development, we used iterative weighted gene correlation network analysis to calculate a gene co-expression network (GCN) from 11 temporally and genetically defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially expressed during pancreas development. Pcdhγ genes are preferentially expressed in pancreatic endoderm, Pcdhß genes in nascent islets, and Pcdhα genes in mature ß-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage, we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and ß-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early postnatal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion and developmental pathways in the pancreas. Together, our results suggest that developmentally oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Organogênese/genética , Pâncreas/crescimento & desenvolvimento , Animais , Caderinas/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Pâncreas/metabolismo
4.
Hum Genet ; 141(9): 1529-1544, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34713318

RESUMO

The genetic analysis of complex traits has been dominated by parametric statistical methods due to their theoretical properties, ease of use, computational efficiency, and intuitive interpretation. However, there are likely to be patterns arising from complex genetic architectures which are more easily detected and modeled using machine learning methods. Unfortunately, selecting the right machine learning algorithm and tuning its hyperparameters can be daunting for experts and non-experts alike. The goal of automated machine learning (AutoML) is to let a computer algorithm identify the right algorithms and hyperparameters thus taking the guesswork out of the optimization process. We review the promises and challenges of AutoML for the genetic analysis of complex traits and give an overview of several approaches and some example applications to omics data. It is our hope that this review will motivate studies to develop and evaluate novel AutoML methods and software in the genetics and genomics space. The promise of AutoML is to enable anyone, regardless of training or expertise, to apply machine learning as part of their genetic analysis strategy.


Assuntos
Aprendizado de Máquina , Herança Multifatorial , Algoritmos , Genômica/métodos , Humanos , Software
5.
Am J Hum Genet ; 105(1): 89-107, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204013

RESUMO

Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases. Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modification states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural genetic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and regulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation of gene expression in the human liver tissue.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Epigênese Genética , Fígado/patologia , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Criança , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Células Hep G2 , Histonas/genética , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Regiões Promotoras Genéticas , Estudos Prospectivos , Sequências Reguladoras de Ácido Nucleico , Adulto Jovem
6.
Genet Epidemiol ; 44(1): 52-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31583758

RESUMO

Genetic interactions have been recognized as a potentially important contributor to the heritability of complex diseases. Nevertheless, due to small effect sizes and stringent multiple-testing correction, identifying genetic interactions in complex diseases is particularly challenging. To address the above challenges, many genomic research initiatives collaborate to form large-scale consortia and develop open access to enable sharing of genome-wide association study (GWAS) data. Despite the perceived benefits of data sharing from large consortia, a number of practical issues have arisen, such as privacy concerns on individual genomic information and heterogeneous data sources from distributed GWAS databases. In the context of large consortia, we demonstrate that the heterogeneously appearing marginal effects over distributed GWAS databases can offer new insights into genetic interactions for which conventional methods have had limited success. In this paper, we develop a novel two-stage testing procedure, named phylogenY-based effect-size tests for interactions using first 2 moments (YETI2), to detect genetic interactions through both pooled marginal effects, in terms of averaging site-specific marginal effects, and heterogeneity in marginal effects across sites, using a meta-analytic framework. YETI2 can not only be applied to large consortia without shared personal information but also can be used to leverage underlying heterogeneity in marginal effects to prioritize potential genetic interactions. We investigate the performance of YETI2 through simulation studies and apply YETI2 to bladder cancer data from dbGaP.


Assuntos
Epistasia Genética/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Bexiga Urinária/genética , Humanos , Disseminação de Informação , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
7.
BMC Bioinformatics ; 21(1): 430, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998684

RESUMO

BACKGROUND: A typical task in bioinformatics consists of identifying which features are associated with a target outcome of interest and building a predictive model. Automated machine learning (AutoML) systems such as the Tree-based Pipeline Optimization Tool (TPOT) constitute an appealing approach to this end. However, in biomedical data, there are often baseline characteristics of the subjects in a study or batch effects that need to be adjusted for in order to better isolate the effects of the features of interest on the target. Thus, the ability to perform covariate adjustments becomes particularly important for applications of AutoML to biomedical big data analysis. RESULTS: We developed an approach to adjust for covariates affecting features and/or target in TPOT. Our approach is based on regressing out the covariates in a manner that avoids 'leakage' during the cross-validation training procedure. We describe applications of this approach to toxicogenomics and schizophrenia gene expression data sets. The TPOT extensions discussed in this work are available at https://github.com/EpistasisLab/tpot/tree/v0.11.1-resAdj . CONCLUSIONS: In this work, we address an important need in the context of AutoML, which is particularly crucial for applications to bioinformatics and medical informatics, namely covariate adjustments. To this end we present a substantial extension of TPOT, a genetic programming based AutoML approach. We show the utility of this extension by applications to large toxicogenomics and differential gene expression data. The method is generally applicable in many other scenarios from the biomedical field.


Assuntos
Big Data , Análise de Dados , Aprendizado de Máquina , Algoritmos , Automação , Humanos
8.
Genet Epidemiol ; 43(6): 717-726, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145509

RESUMO

A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to identify single nucleotide polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is typically in the millions, so the multiple testing burden is high. Motivated by this, in this study we investigated an alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the potential value of incorporating functional genomics information at the onset in GWAS analyses.


Assuntos
Cardiomiopatias/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos , Desequilíbrio de Ligação , Fenótipo , Regiões Promotoras Genéticas , Fluxo de Trabalho
9.
Am J Hum Genet ; 101(5): 643-663, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056226

RESUMO

Neurodegenerative diseases pose an extraordinary threat to the world's aging population, yet no disease-modifying therapies are available. Although genome-wide association studies (GWASs) have identified hundreds of risk loci for neurodegeneration, the mechanisms by which these loci influence disease risk are largely unknown. Here, we investigated the association between common genetic variants at the 7p21 locus and risk of the neurodegenerative disease frontotemporal lobar degeneration. We showed that variants associated with disease risk correlate with increased expression of the 7p21 gene TMEM106B and no other genes; co-localization analyses implicated a common causal variant underlying both association with disease and association with TMEM106B expression in lymphoblastoid cell lines and human brain. Furthermore, increases in the amount of TMEM106B resulted in increases in abnormal lysosomal phenotypes and cell toxicity in both immortalized cell lines and neurons. We then combined fine-mapping, bioinformatics, and bench-based approaches to functionally characterize all candidate causal variants at this locus. This approach identified a noncoding variant, rs1990620, that differentially recruits CTCF in lymphoblastoid cell lines and human brain to influence CTCF-mediated long-range chromatin-looping interactions between multiple cis-regulatory elements, including the TMEM106B promoter. Our findings thus provide an in-depth analysis of the 7p21 locus linked by GWASs to frontotemporal lobar degeneration, nominating a causal variant and causal mechanism for allele-specific expression and disease association at this locus. Finally, we show that genetic variants associated with risk of neurodegenerative diseases beyond frontotemporal lobar degeneration are enriched in CTCF-binding sites found in brain-relevant tissues, implicating CTCF-mediated gene regulation in risk of neurodegeneration more generally.


Assuntos
Demência/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Encéfalo/patologia , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Cromatina , Degeneração Lobar Frontotemporal/genética , Estudo de Associação Genômica Ampla , Genótipo , Células HeLa , Humanos , Neurônios/patologia , Fenótipo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Risco
10.
Artif Life ; 26(1): 23-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027528

RESUMO

Susceptibility to common human diseases such as cancer is influenced by many genetic and environmental factors that work together in a complex manner. The state of the art is to perform a genome-wide association study (GWAS) that measures millions of single-nucleotide polymorphisms (SNPs) throughout the genome followed by a one-SNP-at-a-time statistical analysis to detect univariate associations. This approach has identified thousands of genetic risk factors for hundreds of diseases. However, the genetic risk factors detected have very small effect sizes and collectively explain very little of the overall heritability of the disease. Nonetheless, it is assumed that the genetic component of risk is due to many independent risk factors that contribute additively. The fact that many genetic risk factors with small effects can be detected is taken as evidence to support this notion. It is our working hypothesis that the genetic architecture of common diseases is partly driven by non-additive interactions. To test this hypothesis, we developed a heuristic simulation-based method for conducting experiments about the complexity of genetic architecture. We show that a genetic architecture driven by complex interactions is highly consistent with the magnitude and distribution of univariate effects seen in real data. We compare our results with measures of univariate and interaction effects from two large-scale GWASs of sporadic breast cancer and find evidence to support our hypothesis that is consistent with the results of our computational experiment.


Assuntos
Biologia Computacional , Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Humanos
11.
Mov Disord ; 34(9): 1333-1344, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31234232

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) in the α-synuclein (SNCA) gene are associated with differential risk and age at onset (AAO) of both idiopathic and Leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD). Yet potential combinatory or synergistic effects among several modulatory SNPs for PD risk or AAO remain largely underexplored. OBJECTIVES: The mechanistic target of rapamycin (mTOR) signaling pathway is functionally impaired in PD. Here we explored whether SNPs in the mTOR pathway, alone or by epistatic interaction with known susceptibility factors, can modulate PD risk and AAO. METHODS: Based on functional relevance, we selected a total of 64 SNPs mapping to a total of 57 genes from the mTOR pathway and genotyped a discovery series cohort encompassing 898 PD patients and 921 controls. As a replication series, we screened 4170 PD and 3014 controls available from the International Parkinson's Disease Genomics Consortium. RESULTS: In the discovery series cohort, we found a 4-loci interaction involving STK11 rs8111699, FCHSD1 rs456998, GSK3B rs1732170, and SNCA rs356219, which was associated with an increased risk of PD (odds ratio = 2.59, P < .001). In addition, we also found a 3-loci epistatic combination of RPTOR rs11868112 and RPS6KA2 rs6456121 with SNCA rs356219, which was associated (odds ratio = 2.89; P < .0001) with differential AAO. The latter was further validated (odds ratio = 1.56; P = 0.046-0.047) in the International Parkinson's Disease Genomics Consortium cohort. CONCLUSIONS: These findings indicate that genetic variability in the mTOR pathway contributes to SNCA effects in a nonlinear epistatic manner to modulate differential AAO in PD, unraveling the contribution of this cascade in the pathogenesis of the disease. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/patologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , alfa-Sinucleína/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Estudos de Coortes , Epistasia Genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Medição de Risco
12.
Hum Genet ; 137(5): 413-425, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29797095

RESUMO

Although Genome Wide Association Studies (GWAS) have led to many valuable insights into the genetic bases of common diseases over the past decade, the issue of missing heritability has surfaced, as the discovered main effect genetic variants found to date do not account for much of a trait's predicted genetic component. We present a workflow, integrating epigenomics and topologically associating domain data, aimed at discovering trait-associated SNP pairs from GWAS where neither SNP achieved independent genome-wide significance. Each analyzed SNP pair consists of one SNP in a putative active enhancer and another SNP in a putative physically interacting gene promoter in a trait-relevant tissue. As a proof-of-principle case study, we used this approach to identify focused collections of SNP pairs that we analyzed in three independent Type 2 diabetes (T2D) GWAS. This approach led us to discover 35 significant SNP pairs, encompassing both novel signals and signals for which we have found orthogonal support from other sources. Nine of these pairs are consistent with eQTL results, two are consistent with our own capture C experiments, and seven involve signals supported by recent T2D literature.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigenômica , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Locos de Características Quantitativas/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
13.
Genes Dev ; 24(10): 1035-44, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20478996

RESUMO

The transcriptional mechanisms by which temporary exposure to developmental signals instigates adipocyte differentiation are unknown. During early adipogenesis, we find transient enrichment of the glucocorticoid receptor (GR), CCAAT/enhancer-binding protein beta (CEBPbeta), p300, mediator subunit 1, and histone H3 acetylation near genes involved in cell proliferation, development, and differentiation, including the gene encoding the master regulator of adipocyte differentiation, peroxisome proliferator-activated receptor gamma2 (PPARgamma2). Occupancy and enhancer function are triggered by adipogenic signals, and diminish upon their removal. GR, which is important for adipogenesis but need not be active in the mature adipocyte, functions transiently with other enhancer proteins to propagate a new program of gene expression that includes induction of PPARgamma2, thereby providing a memory of the earlier adipogenic signal. Thus, the conversion of preadipocyte to adipocyte involves the formation of an epigenomic transition state that is not observed in cells at the beginning or end of the differentiation process.


Assuntos
Adipogenia/fisiologia , Epigênese Genética , Transdução de Sinais , Acetilação , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Histonas/metabolismo , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores de Glucocorticoides/metabolismo
14.
Development ; 141(15): 2939-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053427

RESUMO

Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1(GFPCre) reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células Endócrinas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Alelos , Processamento Alternativo , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Separação Celular , Matriz Extracelular/metabolismo , Citometria de Fluxo , Redes Reguladoras de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Pâncreas/embriologia , RNA/metabolismo , Splicing de RNA , Células-Tronco/citologia , Fatores de Tempo , Transcrição Gênica
15.
Diabetologia ; 59(11): 2360-2368, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539148

RESUMO

AIMS/HYPOTHESIS: One of the most strongly associated type 2 diabetes loci reported to date resides within the TCF7L2 gene. Previous studies point to the T allele of rs7903146 in intron 3 as the causal variant at this locus. We aimed to identify the actual gene(s) under the influence of this variant. METHODS: Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease, we generated a 1.4 kb deletion of the genomic region harbouring rs7903146 in the HCT116 cell line, followed by global gene expression analysis. We then carried out a combination of circularised chromosome conformation capture (4C) and Capture C in cell lines, HCT116 and NCM460 in order to ascertain which promoters of these perturbed genes made consistent physical contact with this genomic region. RESULTS: We observed 99 genes with significant differential expression (false discovery rate [FDR] cut-off:10%) and an effect size of at least twofold. The subsequent promoter contact analyses revealed just one gene, ACSL5, which resides in the same topologically associating domain as TCF7L2. The generation of additional, smaller deletions (66 bp and 104 bp) comprising rs7903146 showed consistently reduced ACSL5 mRNA levels across all three deletions of up to 30-fold, with commensurate loss of acyl-CoA synthetase long-chain family member 5 (ACSL5) protein. Notably, the deletion of this single-nucleotide polymorphism region abolished significantly detectable chromatin contacts with the ACSL5 promoter. We went on to confirm that contacts between rs7903146 and the ACSL5 promoter regions were conserved in human colon tissue. ACSL5 encodes ACSL5, an enzyme with known roles in fatty acid metabolism. CONCLUSIONS/INTERPRETATION: This 'variant to gene mapping' effort implicates the genomic location harbouring rs7903146 as a regulatory region for ACSL5.


Assuntos
Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Western Blotting , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Colo/metabolismo , Células HCT116 , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Arterioscler Thromb Vasc Biol ; 35(6): 1317-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838424

RESUMO

Arterial endothelial phenotype is regulated by local hemodynamic forces that are linked to regional susceptibility to atherogenesis. A complex hierarchy of transcriptional, translational, and post-translational mechanisms is greatly influenced by the characteristics of local arterial shear stress environments. We discuss the emerging role of localized disturbed blood flow on epigenetic mechanisms of endothelial responses to biomechanical stress, including transcriptional regulation by proximal promoter DNA methylation, and post-transcriptional and translational regulation of gene and protein expression by chromatin remodeling and noncoding RNA-based mechanisms. Dynamic responses to flow characteristics in vivo and in vitro include site-specific differentially methylated regions of swine and mouse endothelial methylomes, histone marks regulating chromatin conformation, microRNAs, and long noncoding RNAs. Flow-mediated epigenomic responses intersect with cis and trans factor regulation to maintain endothelial function in a shear-stressed environment and may contribute to localized endothelial dysfunctions that promote atherosusceptibility.


Assuntos
Aterosclerose/genética , Aterosclerose/fisiopatologia , Endotélio Vascular/fisiopatologia , Epigênese Genética , Hemodinâmica/fisiologia , Estresse Mecânico , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Genes Homeobox/fisiologia , Histonas/metabolismo , MicroRNAs/fisiologia , Fenótipo , Modificação Traducional de Proteínas , RNA Longo não Codificante/fisiologia , Proteínas Repressoras/metabolismo , Transcrição Gênica
17.
BMC Genomics ; 16: 506, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148682

RESUMO

BACKGROUND: Atherosclerosis is a heterogeneously distributed disease of arteries in which the endothelium plays an important central role. Spatial transcriptome profiling of endothelium in pre-lesional arteries has demonstrated differential phenotypes primed for athero-susceptibility at hemodynamic sites associated with disturbed blood flow. DNA methylation is a powerful epigenetic regulator of endothelial transcription recently associated with flow characteristics. We investigated differential DNA methylation in flow region-specific aortic endothelial cells in vivo in adult domestic male and female swine. RESULTS: Genome-wide DNA methylation was profiled in endothelial cells (EC) isolated from two robust locations of differing patho-susceptibility:--an athero-susceptible site located at the inner curvature of the aortic arch (AA) and an athero-protected region in the descending thoracic (DT) aorta. Complete methylated DNA immunoprecipitation sequencing (MeDIP-seq) identified over 5500 endothelial differentially methylated regions (DMRs). DMR density was significantly enriched in exons and 5'UTR sequences of annotated genes, 60 of which are linked to cardiovascular disease. The set of DMR-associated genes was enriched in transcriptional regulation, pattern specification HOX loci, oxidative stress and the ER stress adaptive pathway, all categories linked to athero-susceptible endothelium. Examination of the relationship between DMR and mRNA in HOXA genes demonstrated a significant inverse relationship between CpG island promoter methylation and gene expression. Methylation-specific PCR (MSP) confirmed differential CpG methylation of HOXA genes, the ER stress gene ATF4, inflammatory regulator microRNA-10a and ARHGAP25 that encodes a negative regulator of Rho GTPases involved in cytoskeleton remodeling. Gender-specific DMRs associated with ciliogenesis that may be linked to defects in cilia development were also identified in AA DMRs. CONCLUSIONS: An endothelial methylome analysis identifies epigenetic DMR characteristics associated with transcriptional regulation in regions of atherosusceptibility in swine aorta in vivo. The data represent the first methylome blueprint for spatio-temporal analyses of lesion susceptibility predisposing to endothelial dysfunction in complex flow environments in vivo.


Assuntos
Aorta/metabolismo , Metilação de DNA/genética , Endotélio Vascular/metabolismo , Transcriptoma/genética , Animais , Aterosclerose/genética , Ilhas de CpG/genética , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Masculino , Fenótipo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Análise Espaço-Temporal , Suínos
18.
Diabetes ; 73(10): 1697-1704, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39083653

RESUMO

Persistent enterovirus B infection has been proposed as an important contributor to the etiology of type 1 diabetes. We leveraged extensive bulk RNA-sequencing (RNA-seq) data from α-, ß-, and exocrine cells, as well as islet single-cell RNA-seq data from the Human Pancreas Analysis Program (HPAP), to evaluate the presence of enterovirus B sequences in the pancreas of patients with type 1 diabetes and prediabetes (no diabetes but positive for autoantibodies). We examined all available HPAP data for either assay type, including donors without diabetes and with type 1 and type 2 diabetes. To assess the presence of viral reads, we analyzed all reads not mapping to the human genome with the taxonomic classification system Kraken2 and its full viral database augmented to encompass representatives for all 28 enterovirus B serotypes for which a complete genome is available. As a secondary approach, we input the same sequence reads into the STAR aligner using these 28 enterovirus B genomes as the reference. No enterovirus B sequences were detected by either approach in any of the 243 bulk RNA libraries or in any of the 79 single-cell RNA libraries. While we cannot rule out the possibility of a very-low-grade persistent enterovirus B infection in the donors analyzed, our data do not support the notion of chronic viral infection by these viruses as a major driver of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Enterovirus Humano B , Infecções por Enterovirus , Ilhotas Pancreáticas , Estado Pré-Diabético , Análise de Sequência de RNA , Diabetes Mellitus Tipo 1/virologia , Diabetes Mellitus Tipo 1/genética , Humanos , Ilhotas Pancreáticas/virologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/genética , Estado Pré-Diabético/virologia , Estado Pré-Diabético/genética , Enterovirus Humano B/genética , Análise de Sequência de RNA/métodos , Masculino , Feminino , Adulto
19.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229212

RESUMO

Late-onset Alzheimer's disease (LOAD) research has principally focused on neurons over the years due to their known role in the production of amyloid beta plaques and neurofibrillary tangles. In contrast, recent genomic studies of LOAD have implicated microglia as culprits of the prolonged inflammation exacerbating the neurodegeneration observed in patient brains. Indeed, recent LOAD genome-wide association studies (GWAS) have reported multiple loci near genes related to microglial function, including TREM2, ABI3, and CR1. However, GWAS alone cannot pinpoint underlying causal variants or effector genes at such loci, as most signals reside in non-coding regions of the genome and could presumably confer their influence frequently via long-range regulatory interactions. We elected to carry out a combination of ATAC-seq and high-resolution promoter-focused Capture-C in two human microglial cell models (iPSC-derived microglia and HMC3) in order to physically map interactions between LOAD GWAS-implicated candidate causal variants and their corresponding putative effector genes. Notably, we observed consistent evidence that rs6024870 at the GWAS CASS4 locus contacted the promoter of nearby gene, RTFDC1. We subsequently observed a directionallly consistent decrease in RTFDC1 expression with the the protective minor A allele of rs6024870 via both luciferase assays in HMC3 cells and expression studies in primary human microglia. Through CRISPR-Cas9-mediated deletion of the putative regulatory region harboring rs6024870 in HMC3 cells, we observed increased pro-inflammatory cytokine secretion and decreased DNA double strand break repair related, at least in part, to RTFDC1 expression levels. Our variant-to-function approach therefore reveals that the rs6024870-harboring regulatory element at the LOAD 'CASS4' GWAS locus influences both microglial inflammatory capacity and DNA damage resolution, along with cumulative evidence implicating RTFDC1 as a novel candidate effector gene.

20.
Stem Cells ; 30(10): 2297-308, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865702

RESUMO

Sox17 is essential for both endoderm development and fetal hematopoietic stem cell (HSC) maintenance. While endoderm-derived organs are well known to originate from Sox17-expressing cells, it is less certain whether fetal HSCs also originate from Sox17-expressing cells. By generating a Sox17(GFPCre) allele and using it to assess the fate of Sox17-expressing cells during embryogenesis, we confirmed that both endodermal and a part of definitive hematopoietic cells are derived from Sox17-positive cells. Prior to E9.5, the expression of Sox17 is restricted to the endoderm lineage. However, at E9.5 Sox17 is expressed in the endothelial cells (ECs) at the para-aortic splanchnopleural region that contribute to the formation of HSCs at a later stage. The identification of two distinct progenitor cell populations that express Sox17 at E9.5 was confirmed using fluorescence-activated cell sorting together with RNA-Seq to determine the gene expression profiles of the two cell populations. Interestingly, this analysis revealed differences in the RNA processing of the Sox17 mRNA during embryogenesis. Taken together, these results indicate that Sox17 is expressed in progenitor cells derived from two different germ layers, further demonstrating the complex expression pattern of this gene and suggesting caution when using Sox17 as a lineage-specific marker.


Assuntos
Células-Tronco Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição SOXF/genética , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos , Desenvolvimento Embrionário , Endoderma/citologia , Endoderma/metabolismo , Células-Tronco Fetais/citologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas HMGB/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , Fatores de Transcrição SOXF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA