Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38562842

RESUMO

Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons. Cannabinoid receptor-2 (CB2) is highly expressed on activated microglia and peripheral immune cells, is upregulated in the substantia nigra of individuals with PD and in mouse models of nigral degeneration. Furthermore, modulation of CB2 protects against rotenone-induced nigral degeneration; however, CB2 has not been pharmacologically and selectively targeted in an Asyn model of PD. Here, we report that 7 weeks of peripheral administration of CB2 inverse agonist SMM-189 reduced phosphorylated (pSer129) alpha-synuclein in the substantia nigra compared to vehicle treatment. Additionally, SMM-189 delayed Asyn-induced immune cell infiltration into the brain as determined by flow cytometry, increased CD68 protein expression, and elevated wound-healing-immune-mediator gene expression. Additionally, peripheral immune cells increased wound-healing non-classical monocytes and decreased pro-inflammatory classical monocytes. In vitro analysis of RAW264.7 macrophages treated with lipopolysaccharide (LPS) and SMM-189 revealed increased phagocytosis as measured by the uptake of fluorescence of pHrodo E. coli bioparticles. Together, results suggest that targeting CB2 with SMM-189 skews immune cell function toward a phagocytic phenotype and reduces toxic aggregated species of Asyn. Our novel findings demonstrate that CB2 may be a target to modulate inflammatory and immune responses in proteinopathies.

2.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585932

RESUMO

Alpha-synuclein (αSyn) aggregation and the formation of Lewy pathology (LP) is a foundational pathophysiological phenomenon in synucleinopathies. Delivering therapeutic single-chain and single-domain antibodies that bind pathogenic targets can disrupt intracellular aggregation. The fusion of antibody fragments to a negatively-charged proteasomal targeting motif (PEST) creates bifunctional constructs that enhance both solubility and turnover. With sequence-specific point mutations of PEST sequences that modulate proteasomal degradation efficiency, we report the creation of Programmable Target Antigen Proteolysis (PTAP) technology that can provide graded control over the levels of target antigens. We have previously demonstrated our lead anti-αSyn intrabody, VH14-PEST, is capable of reducing the pathological burden of synucleinopathy in vitro and in vivo. Here, we report a family of fully humanized VH14-PTAP constructs for controllable, therapeutic targeting of intracellular α-Syn. In cells, we demonstrate successful target engagement and efficacy of VH14-hPEST intrabodies, and validate proof-of-principle in human cells using 3D human organoids derived from PD-patient induced pluripotent stem cells (iPSC). In two synuclein-based rat models, PTAP intrabodies attenuated nigral αSyn pathology, preserved nigrostriatal dopaminergic tone, and slowed the propagation of αSyn pathology. These data demonstrate the potency of intracellular αSyn targeting as a method to alleviate pathology and highlight the potential clinical utility of PTAP intrabodies.

3.
Acta Neuropathol Commun ; 12(1): 11, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238869

RESUMO

Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.


Assuntos
Doenças Desmielinizantes , Atrofia de Múltiplos Sistemas , Sinucleinopatias , Animais , Humanos , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Interferon gama/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Doenças Neuroinflamatórias , Oligodendroglia/patologia , Sinucleinopatias/patologia
4.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895456

RESUMO

Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA