Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 109(5): 1249-1270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897849

RESUMO

Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic and proteomic adaptations. We hypothesize that selected genotypes with distinct phosphorous (P) use efficiency covering the breeding history of European Flint heterotic pool provide a tool to reveal general and genotype-specific molecular responses to P limitation. We reconstructed protein and gene co-expression networks by weighted correlation network analysis and related these to phosphate deficiency-induced traits. In roots, low phosphate supply resulted in a decreasing abundance of proteins in the oxidative pentose phosphate pathway and a negative correlation with root and shoot phosphate content. We observed an increase in abundance and positive correlation with root and shoot phosphate content for proteins in sucrose biosynthesis, lipid metabolism, respiration and RNA processing. Purple acid phosphatases, superoxide dismutase and phenylalanine ammonia lyase were identified as being upregulated under low phosphate in all genotypes. Overall, correlations between protein and mRNA abundance changes were limited, with ribosomal proteins and the ubiquitin protein degradation pathway exclusively responding with protein abundance changes. Carbohydrate, phospho- and sulfo-lipid metabolism showed abundance changes at the protein and mRNA levels. These partially non-overlapping proteomic and transcriptomic adjustments to low phosphate suggest sugar and lipid metabolism as metabolic processes associated with improved P use efficiency specifically in Founder Flint lines. We identified a mitogen-activated protein kinase-kinase as a potential genotype-specific regulator of sucrose metabolism at low phosphate in Founder Flint line EP1. We conclude that, during breedingt of Elite Flint lines, regulation of primary metabolism has changed to result in a distinct low phosphate response in Founder lines.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Genótipo , Fosfatos/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Sacarose/metabolismo , Zea mays/metabolismo
2.
Ann Bot ; 128(4): 431-440, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309655

RESUMO

BACKGROUND AND AIMS: Root proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition. METHODS: Near-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg-1 soil. RESULTS: Both WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients. CONCLUSIONS: In addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.


Assuntos
Fósforo , Zea mays , Nutrientes , Raízes de Plantas , Solo
3.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771628

RESUMO

Phosphorus (P) is an essential nutrient for plant growth and development, as well as an important factor limiting sustainable maize production. Targeted nitrogen (N) fertilization in the form of ammonium has been shown to positively affect Pi uptake under P-deficient conditions compared to nitrate. Nevertheless, its profound effects on root traits, P uptake, and soil microbial composition are still largely unknown. In this study, two maize genotypes F160 and F7 with different P sensitivity were used to investigate phosphorus-related root traits such as root hair length, root diameter, AMF association, and multiple P efficiencies under P limitation when fertilized either with ammonium or nitrate. Ammonium application improved phosphorous acquisition efficiency in the F7 genotype but not in F160, suggesting that the genotype plays an important role in how a particular N form affects P uptake in maize. Additionally, metabarcoding data showed that young maize roots were able to promote distinct microbial taxa, such as arbuscular mycorrhizal fungi, when fertilized with ammonium. Overall, the results suggest that the form of chemical nitrogen fertilizer can be instrumental in selecting beneficial microbial communities associated with phosphorus uptake and maize plant fitness.

4.
Front Plant Sci ; 13: 946584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160997

RESUMO

Nitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil-plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host-pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA