Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35482521

RESUMO

Strain NGK65T, a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65T hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 °C, in 0-1% NaCl and at pH 7.5-8.0. Glycerol, d-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate, sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C16:0 followed by iso-C17:0 and C18:1 ω9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65T belongs to the genus Nocardioides (phylum Actinobacteria), appearing most closely related to Nocardioides daejeonensis MJ31T (98.6%) and Nocardioides dubius KSL-104T (98.3%). The genomic DNA G+C content of strain NGK65T was 68.2%. Strain NGK65T and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9% as well as digital DNA-DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65T can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65T (=DSM 113112T=NCCB 100846T).


Assuntos
Actinomycetales , Nocardioides , Alcanos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Plásticos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35467502

RESUMO

Strain NGK35T is a motile, Gram-stain-negative, rod-shaped (1.0-2.1 µm long and 0.6-0.8 µm wide), aerobic bacterium that was isolated from plastic-polluted landfill soil. The strain grew at temperatures between 6 and 37 °C (optimum, 28 °C), in 0-10 % NaCl (optimum, 1 %) and at pH 6.0-9.5 (optimum, pH 7.5-8.5). It was positive for cytochrome c oxidase, catalase as well as H2S production, and hydrolysed casein and urea. It used a variety of different carbon sources including citrate, lactate and pyruvate. The predominant membrane fatty acids were C16 : 1 cis9 and C16 : 0, followed by C17 : 0 cyclo and C18 : 1 cis11. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine, followed by diphosphatidyglycerol. The only quinone was ubiquinone Q-8. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK35T belongs to the genus Paenalcaligenes (family Alcaligenaceae), appearing most closely related to Paenalcaligenes hominis CCUG 53761AT (96.90 %) and Paenalcaligenes suwonensis ABC02-12T (96.94 %). The genomic DNA G+C content of strain NGK35T was 52.1 mol %. Genome-based calculations (genome-to-genome distance, average nucleotide identity and DNA G+C content) clearly indicated that the isolate represents a novel species within the genus Paenalcaligenes. Based on phenotypic and molecular characterization, strain NGK35T can clearly be differentiated from its phylogenetic neighbours establishing a novel species, for which the name Paenalcaligenes niemegkensis sp. nov. is proposed. The type strain is NGK35T (=DSM 113270T=NCCB 100854T).


Assuntos
Alcaligenaceae , Plásticos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
3.
Glob Chang Biol ; 27(12): 2822-2839, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774862

RESUMO

Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Árticas , Biomarcadores , Lipídeos , Metano/análise , Federação Russa , Sibéria
4.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483268

RESUMO

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Clima Desértico , Solo/química , América do Sul
5.
Microb Ecol ; 74(2): 373-383, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28265693

RESUMO

Microbial activity in petroleum reservoirs has been implicated in a suite of detrimental effects including deterioration of petroleum quality, increases in oil sulfur content, biofouling of steel pipelines and other infrastructures, and well plugging. Here, we present a biogeochemical approach, using phospholipid fatty acids (PLFAs), for detecting viable bacteria in petroleum systems. Variations within the bacterial community along water flow paths (producing well, topside facilities, and injection well) can be elucidated in the field using the same technique, as shown here within oil production plants in the Molasse Basin of Upper Austria. The abundance of PLFAs is compared to total cellular numbers, as detected by qPCR of the 16S rDNA gene, to give an overall comparison between the resolutions of both methods in a true field setting. Additionally, the influence of biocide applications on lipid- and DNA-based quantification was investigated. The first oil field, Trattnach, showed significant PLFA abundances and cell numbers within the reservoir and topside facilities. In contrast, the second field (Engenfeld) showed very low PLFA levels overall, likely due to continuous treatment of the topside facilities with a glutaraldehyde-based antimicrobial. In comparison, Trattnach is dosed once per week in a batch fashion. Changes within PLFA compositions across the flow path, throughout the petroleum production plants, point to cellular adaptation within the system and may be linked to shifts in the dominance of certain bacterial types in oil reservoirs versus topside facilities. Overall, PLFA-based monitoring provides a useful tool to assess the abundance and high-level taxonomic diversity of viable microbial populations in oil production wells, topside infrastructure, pipelines, and other related facilities.


Assuntos
Bactérias/classificação , Lipídeos de Membrana/análise , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Áustria , RNA Ribossômico 16S/genética
6.
Int J Syst Evol Microbiol ; 64(Pt 2): 522-527, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24108325

RESUMO

A novel strain of methanogenic archaea, designated MC-20(T), was isolated from the anoxic sediment of a subsurface lake in Movile Cave, Mangalia, Romania. Cells were non-motile, Gram-stain-negative rods 3.5-4.0 µm in length and 0.6-0.7 µm in width, and occurred either singly or in short chains. Strain MC-20(T) was able to utilize H2/CO2, formate, 2-propanol and 2-butanol as substrate, but not acetate, methanol, ethanol, dimethyl sulfide, monomethylamine, dimethylamine or trimethylamine. Neither trypticase peptone nor yeast extract was required for growth. The major membrane lipids of strain MC-20(T) were archaeol phosphatidylethanolamine and diglycosyl archaeol, while archaeol phosphatidylinositol and glycosyl archaeol were present only in minor amounts. Optimal growth was observed at 33 °C, pH 7.4 and 0.08 M NaCl. Based on phylogenetic analysis of 16S rRNA gene sequences, strain MC-20(T) was closely affiliated with Methanobacterium oryzae FPi(T) (similarity 97.1%) and Methanobacterium lacus 17A1(T) (97.0%). The G+C content of the genomic DNA was 33.0 mol%. Based on phenotypic and genotypic differences, strain MC-20(T) was assigned to a novel species of the genus Methanobacterium for which the name Methanobacterium movilense sp. nov. is proposed. The type strain is MC-20(T) ( = DSM 26032(T) = JCM 18470(T)).


Assuntos
Cavernas/microbiologia , Sedimentos Geológicos/microbiologia , Methanobacterium/classificação , Filogenia , Composição de Bases , DNA Arqueal/genética , Lagos/microbiologia , Methanobacterium/genética , Methanobacterium/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 64(Pt 10): 3478-3484, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052394

RESUMO

A novel methanogenic archaeon, strain MC-15(T), was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2-4 µm, occurring in aggregates. The strain was able to grow autotrophically on H2/CO2. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15(T) were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, Methanosarcina vacuolata and Methanosarcina horonobensis, had a similar composition of major membrane lipids to strain MC-15(T). The 16S rRNA gene sequence of strain MC-15(T) was similar to those of Methanosarcina vacuolata DSM 1232(T) (sequence similarity 99.3%), Methanosarcina horonobensis HB-1(T) (98.8%), Methanosarcina barkeri DSM 800(T) (98.7%) and Methanosarcina siciliae T4/M(T) (98.4%). DNA-DNA hybridization revealed 43.3% relatedness between strain MC-15(T) and Methanosarcina vacuolata DSM 1232(T). The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15(T) represents a novel species of the genus Methanosarcina, for which the name Methanosarcina spelaei sp. nov. is proposed. The type strain is MC-15(T) ( = DSM 26047(T) = JCM 18469(T)).


Assuntos
Biofilmes , Methanosarcina/classificação , Filogenia , Microbiologia da Água , Composição de Bases , Cavernas/microbiologia , DNA Arqueal/genética , DNA Bacteriano/genética , Lagos/microbiologia , Lipídeos/química , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Romênia , Análise de Sequência de DNA , Enxofre
8.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38955392

RESUMO

Guaymas Basin, located in the Gulf of California, is a hydrothermally active marginal basin. Due to steep geothermal gradients and localized heating by sill intrusions, microbial substrates like short-chain fatty acids and hydrocarbons are abiotically produced from sedimentary organic matter at comparatively shallow depths. We analyzed the effect of hydrocarbons on uptake of hydrocarbons by microorganisms via nano-scale secondary ion mass spectrometry (NanoSIMS) and microbial sulfate reduction rates (SRR), using samples from two drill sites sampled by IODP Expedition 385 (U1545C and U1546D). These sites are in close proximity of each other (ca. 1 km) and have very similar sedimentology. Site U1546D experienced the intrusion of a sill that has since then thermally equilibrated with the surrounding sediment. Both sites currently have an identical geothermal gradient, despite their different thermal history. The localized heating by the sill led to thermal cracking of sedimentary organic matter and formation of potentially bioavailable organic substrates. There were low levels of hydrocarbon and nitrogen uptake in some samples from both sites, mostly in surficial samples. Hydrocarbon and methane additions stimulated SRR in near-seafloor samples from Site U1545C, while samples from Site U1546D reacted positively only on methane. Our data indicate the potential of microorganisms to metabolize hydrocarbons even in the deep subsurface of Guaymas Basin.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Sulfatos/metabolismo , Metano/metabolismo , Espectrometria de Massa de Íon Secundário , Água do Mar/microbiologia , Nitrogênio/metabolismo
9.
Int J Syst Evol Microbiol ; 63(Pt 8): 2986-2991, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23378113

RESUMO

A methanogenic archaeon, strain SMA-21(T), was isolated from a permafrost-affected soil by serial dilution in liquid medium. The cells were non-motile, stained Gram-negative and grew as irregular cocci with a diameter of 1.3-2.5 µm. Optimal growth was observed at 28 °C, pH 7.8 and 0.02 M NaCl. The strain grew on H2/CO2, methanol and acetate, but not on formate, ethanol, 2-butanol, 2-propanol, monomethylamine, dimethylamine, trimethylamine or dimethyl sulfide. Major membrane lipids of strain SMA-21(T) were archaeol phosphatidylglycerol, archaeol phosphatidylethanolamine and the corresponding hydroxyarchaeol compounds. The G+C content of the genomic DNA was 40.9 mol%. The 16S rRNA gene sequence was closely related to those of Methanosarcina mazei DSM 2053(T) (similarity 99.9 %) and Methanosarcina horonobensis HB-1(T) (similarity 98.7 %). On basis of the level of DNA-DNA hybridization (22.1 %) between strain SMA-21(T) and Methanosarcina mazei DSM 2053(T) as well as of phenotypic and genotypic differences, strain SMA-21(T) was assigned to a novel species of the genus Methanosarcina, for which the name Methanosarcina soligelidi sp. nov. is proposed. The type strain is SMA-21(T) (=DSM 26065(T) [corrected] = JCM 18468).


Assuntos
Methanosarcina/classificação , Filogenia , Microbiologia do Solo , Composição de Bases , DNA Arqueal/genética , Methanosarcina/genética , Methanosarcina/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria
10.
Int J Syst Evol Microbiol ; 63(Pt 7): 2666-2671, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23291884

RESUMO

During diversity studies of the glacier forefields of the Larsemann Hills, East Antarctica, a novel psychrotolerant, non-motile Gram-negative, shiny yellow, rod-shaped, aerobic bacterium, designated strain PB4(T) was isolated from a soil sample. Strain PB4(T) produces indole from tryptophan and hydrolyses casein. It grows between 0 and 25 °C with an optimum growth temperature of 20 °C. A wide range of substrates are used as sole carbon sources and acid is produced from numerous carbohydrates. The major menaquinone is MK-6. Identified polar lipids are ethanolamines and ornithine lipids. Major fatty acids (>10 %) are iso-C15 : 0 (13.0 %) and iso-2OH-C15 : 0 (51.2 %). G+C content is 33.7 mol%. The polyamine pattern is composed of sym-homospermidine (25.1 µmol g(-1) dry weight), minor amounts of cadaverine (0.2 µmol g(-1) dry weight) and spermidine (0.4 µmol g(-1) dry weight) and traces of putrescine and spermine (<0.1 µmol g(-1) dry weight). Strain PB4(T) had highest 16S rRNA gene similarities with the type strains of Chryseobacterium humi (97.0 %) and Chryseobacterium marinum (96.5 %). Considering phenotypic and genotypic characterization, strain PB4(T) represents a novel species in the genus Chryseobacterium (family Flavobacteriaceae), for which the name Chryseobacterium frigidisoli sp. nov. is proposed. The type strain is PB4(T) ( = DSM 26000(T) = LMG 27025(T)).


Assuntos
Chryseobacterium/classificação , Camada de Gelo/microbiologia , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Poliaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
11.
Int J Syst Evol Microbiol ; 63(Pt 9): 3197-3203, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23456802

RESUMO

A novel psychrotolerant, Gram-negative, shiny white, curved-rod-shaped, facultatively anaerobic bacterium PB1(T) was isolated from a soil sample collected from a glacier forefield of the Larsemann Hills, East Antarctica. Isolate PB1(T) has catalase and low urease activity and hydrolyses gelatin and starch. Strain PB1(T) is able to grow between -5 °C and 30 °C with optimum growth at 14-20 °C. Glycerol, dl-arabinose, d-xylose, d-galactose, d-fructose, d-lyxose, d-fucose and potassium gluconate are used as sole carbon sources. The major quinone is ubiquinone Q-8. The major fatty acids (>10%) for PB1(T) are C(16:0) (19.1%), C(16:1)ω7cis (44.6%) and C(18:1)ω7cis (16.2%). The major polyamines are putrescine [54.9 µmol (g dry weight)(-1)] and 2-hydroxy putrescine [18.5 µmol (g dry weight)(-1)]. DNA G+C content is 62.5 mol%. Strain PB1(T) is phylogenetically related to species of the genus Herbaspirillum, with highest 16S rRNA gene sequence similarities to Herbaspirillum canariense (97.3%), Herbaspirillum aurantiacum (97.2%), Herbaspirillum soli (97.2%) and Herbaspirillum frisingense (97.0%). The DNA-DNA relatedness values were below 30% between PB1(T) and the type strains of Herbaspirillum canariense, Herbaspirillum aurantiacum and Herbaspirillum soli. The different geographical origin of strain PB1(T) from its closest phylogenetic relatives resulted in different phenotypic and genotypic specifications, whereby strain PB(T) represents a novel species of the genus Herbaspirillum, for which the name Herbaspirillum psychrotolerans is proposed. The type strain is PB1(T) (DSM 26001(T) =LMG 27282(T)).


Assuntos
Herbaspirillum/classificação , Camada de Gelo/microbiologia , Filogenia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Herbaspirillum/genética , Herbaspirillum/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Poliaminas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análise
12.
J Bacteriol ; 194(9): 2165-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22366417

RESUMO

"Aromatoleum aromaticum" EbN1 was cultivated at different growth rates in benzoate-limited chemostats under nitrate-reducing conditions. Physiological characteristics, proteome dynamics, phospholipid-linked fatty acid (PLFA) composition, and poly(3-hydroxybutyrate) (PHB) content were analyzed in steady-state cells at low (µ(low)) (0.036 h(-1)), medium (µ(med)) (0.108 h(-1)), and high (µ(high)) (0.180 h(-1)) growth rates. A positive correlation to growth rate was observed for cellular parameters (cell size, and DNA and protein contents). The free energy consumed for biomass formation steadily increased with growth rate. In contrast, the energy demand for maintenance increased only from µ(low) to µ(med) and then remained constant until µ(high). The most comprehensive proteomic changes were observed at µ(low) compared to µ(high). Uniformly decreased abundances of protein components of the anaerobic benzoyl coenzyme A (benzoyl-CoA) pathway, central carbon metabolism, and information processing agree with a general deceleration of benzoate metabolism and cellular processes in response to slow growth. In contrast, increased abundances were observed at µ(low) for diverse catabolic proteins and components of uptake systems in the absence of the respective substrate (aromatic or aliphatic compounds) and for proteins involved in stress responses. This potential catabolic versatility and stress defense during slow growth may be interpreted as preparation for future needs.


Assuntos
Benzoatos/metabolismo , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxigênio/metabolismo , Adaptação Fisiológica , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Benzoatos/química , Betaproteobacteria/classificação , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/fisiologia , Nitratos/metabolismo , Proteoma , Estresse Fisiológico , Especificidade por Substrato
13.
Int J Syst Evol Microbiol ; 61(Pt 8): 1938-1943, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20833887

RESUMO

A cold-tolerant, yellow-pigmented, Gram-positive, motile, facultatively anaerobic bacterial strain, LI1(T), was isolated from a moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St. Kliment Ohridski. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis KFC-22(T), Leifsonia pindariensis PON10(T) and Leifsonia antarctica SPC-20(T), with which it showed sequence similarities of 99.0, 97.9 and 97.9 %, respectively. DNA-DNA hybridization revealed a reassociation value of 2.7 % with L. kafniensis LMG 24362(T). The DNA G+C content of strain LI1(T) was 64.5 mol%. The growth temperature range was -6 to 28 °C, with optimum growth at 16 °C. Growth occurred in 0-5 % NaCl and at pH 4.5-9.5, with optimum growth in 1-2 % NaCl and at pH 5.5-6.5. The predominant fatty acids were anteiso-C(15 : 0), C(18 : 0) and iso-C(15 : 0). The polar lipids were phosphatidylglycerol and diphosphatidylglycerol. Physiological and biochemical tests clearly differentiated strain LI1(T) from L. kafniensis. Therefore, a novel cold-tolerant species within the genus Leifsonia is proposed: Leifsonia psychrotolerans sp. nov. (type strain LI1(T) = DSM 22824(T) = NCCB 100313(T)).


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/metabolismo , Regiões Antárticas , Temperatura Baixa , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
14.
Int J Syst Evol Microbiol ; 61(Pt 8): 1849-1853, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20817836

RESUMO

A psychrotolerant, Gram-stain-positive, yellow-pigmented, aerobic rod, designated SK1(T), was isolated from a soil sample collected from Store Koldewey, north-east Greenland. Cells were catalase- and methyl red-positive, produced H(2)S and produced acid from glucose, mannitol and salicin. Strain SK1(T) was able to grow between -6 and 28 °C, with an optimum at 20 °C. The isolate contained 2,4-diaminobutyrate, glycine, alanine and glutamic acid in the cell wall and the major menaquinones were MK-10 and MK-11. Identified polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C(15 : 0) (53.5 %), anteiso-C(17 : 0) (17.0 %) and C(18 : 0) (12.1 %). The genomic DNA G+C content was 67.8 mol%. Strain SK1(T) showed the highest 16S rRNA gene sequence similarity with Cryobacterium psychrotolerans 0549(T) (97.6 %) and Cryobacterium roopkundense RuGl7(T) (96.8 %). Considering morphological, physiological, biochemical and chemotaxonomic characters and phylogenetic analysis, strain SK1(T) represents a novel species in the genus Cryobacterium, for which the name Cryobacterium arcticum sp. nov. is proposed. The type strain is SK1(T) ( = DSM 22823(T)  = NCCB 100316(T)).


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/metabolismo , Regiões Árticas , Temperatura Baixa , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
15.
Int J Syst Evol Microbiol ; 61(Pt 4): 979-984, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20511467

RESUMO

Two novel cold-tolerant, Gram-stain-positive, motile, facultatively anaerobic bacterial strains, LI2(T) and LI3(T), were isolated from moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St Kliment Ohridski. A rod-coccus cycle was observed for both strains. 16S rRNA gene sequence analysis revealed an affiliation to the genus Arthrobacter, with the highest similarity to Arthrobacter stackebrandtii and Arthrobacter psychrochitiniphilus for strain LI2(T) (97.8 and 97.7 % similarity to the respective type strains) and to Arthrobacter kerguelensis and Arthrobacter psychrophenolicus for strain LI3(T) (97.4 and 97.3 % similarity to the respective type strains). The growth temperature range was -6 to 28 °C for LI2(T) and -6 to 24 °C for LI3(T), with an optimum at 16 °C for both strains. Growth occurred at 0-10 % (w/v) NaCl, with optimum growth at 0-1 % (w/v) for LI2(T) and 0.5-3 % (w/v) for LI3(T). The pH range for growth was pH 4-9.5 with an optimum of pH 8 for LI2(T) and pH 6.5 for LI3(T). The predominant fatty acids were anteiso-C(15 : 0), C(18 : 0) and anteiso-C(17 : 0) for LI2(T) and anteiso-C(15 : 0) and C(18 : 0) for LI3(T). Physiological and biochemical tests clearly differentiated strain LI2(T) from A. stackebrandtii and A. psychrochitiniphilus and strain LI3(T) from A. kerguelensis and A. psychrophenolicus. Therefore, two novel species within the genus Arthrobacter are proposed: Arthrobacter livingstonensis sp. nov. (type strain LI2(T)  = DSM 22825(T)  = NCCB 100314(T)) and Arthrobacter cryotolerans sp. nov. (type strain LI3(T)  = DSM 22826(T)  = NCCB 100315(T)).


Assuntos
Arthrobacter/classificação , Arthrobacter/isolamento & purificação , Microbiologia do Solo , Aerobiose , Anaerobiose , Regiões Antárticas , Arthrobacter/genética , Arthrobacter/fisiologia , Análise por Conglomerados , Temperatura Baixa , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
16.
Microorganisms ; 9(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498742

RESUMO

Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.

17.
ISME J ; 15(6): 1735-1750, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462364

RESUMO

Carbon turnover in aquatic environments is dependent on biochemical properties of organic matter (OM) and its degradability by the surrounding microbial community. Non-additive interactive effects represent a mechanism where the degradation of biochemically persistent OM is stimulated by the provision of bioavailable OM to the degrading microbial community. Whilst this is well established in terrestrial systems, whether it occurs in aquatic ecosystems remains subject to debate. We hypothesised that OM from zooplankton carcasses can stimulate the degradation of biochemically persistent leaf material, and that this effect is influenced by the daphnia:leaf OM ratio and the complexity of the degrading microbial community. Fresh Daphnia magna carcasses and 13C-labelled maize leaves (Zea mays) were incubated at different ratios (1:1, 1:3 and 1:5) alongside either a complex microbial community (<50 µm) or solely bacteria (<0.8 µm). 13C stable-isotope measurements of CO2 analyses were combined with phospholipid fatty acids (PLFA) analysis and DNA sequencing to link metabolic activities, biomass and taxonomic composition of the microbial community. Our experiments indicated a significantly higher respiration of leaf-derived C when daphnia-derived OM was most abundant (i.e. daphnia:leaf OM ratio of 1:1). This process was stronger in a complex microbial community, including eukaryotic microorganisms, than a solely bacterial community. We concluded that non-additive interactive effects were a function of increased C-N chemodiversity and microbial complexity, with the highest net respiration to be expected when chemodiversity is high and the degrading community complex. This study indicates that identifying the interactions and processes of OM degradation is one important key for a deeper understanding of aquatic and thus global carbon cycle.


Assuntos
Ecossistema , Zooplâncton , Animais , Carbono , Ciclo do Carbono , Daphnia , Material Particulado
18.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065975

RESUMO

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

19.
Front Microbiol ; 11: 543260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381087

RESUMO

The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system.

20.
Anal Bioanal Chem ; 390(3): 885-96, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18038226

RESUMO

In an earlier study of deep subsurface sediments from Nankai Trough (ODP Leg 190, offshore Japan) we employed intact phospholipids (PLs) as molecular indicators of living microorganisms. The current study extends this work by quantifying absolute amounts of sedimentary PLs by liquid chromatography-mass spectrometry (LC-MS) and by converting PL data into cell numbers in order to improve methods to estimate the extent of bacterial life in the subsurface. Investigations were carried out on 90 cm short cores of Lake Baikal sediment. High amounts of identified intact PLs are interpreted as reflecting the constituents of living bacteria due to high organic matter decomposition and oxic mineralisation between the epilimnion and the sediment-water interface. Concentrations of ester-bound PLs reach up to 13,120 ng/g sediment dry weight. Predominance of ethanolamine and glycerol PL head groups confirms the bacterial origin. The most abundant side-chain pairs are combinations including 14:0 and 16:0 fatty acids and to a minor extent 15:0 and 16:1 fatty acids. Depth profiles of PL concentrations converted from conventional PL fatty acid analysis are of the same order of magnitude and show comparable trends as those for intact PLs. An approximate estimation of bacterial cell numbers is inferred from intact PL quantification using LC-MS.


Assuntos
Biomassa , Membrana Celular/metabolismo , Monitoramento Ambiental/métodos , Fosfolipídeos/química , Bactérias/metabolismo , Cromatografia Líquida/métodos , Etanolamina/química , Ácidos Graxos/química , Glicerol/química , Espectrometria de Massas/métodos , Federação Russa , Espectrometria de Massas por Ionização por Electrospray , Propriedades de Superfície , Água/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA