Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36402135

RESUMO

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Assuntos
Imunoglobulina M , Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Testes de Neutralização , Infecção por Zika virus/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação
2.
Cell ; 178(1): 190-201.e11, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204101

RESUMO

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.


Assuntos
Infecções por HIV/transmissão , HIV/genética , Imunoglobulina G/sangue , Transmissão Vertical de Doenças Infecciosas , Placenta/metabolismo , Complicações Infecciosas na Gravidez/virologia , Receptores de IgG/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Glicosilação , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Lactente , Recém-Nascido , Malaui , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Estados Unidos , Carga Viral/genética
3.
Front Immunol ; 15: 1360342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529284

RESUMO

Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to the immune system, predominantly characterized by CD4+ T cell depletion, leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy (ART) effectively suppresses the viral load in people with HIV (PWH), leading to a state of chronic infection that is associated with inflammation. This review explores the complex relationship between oxidative phosphorylation, a crucial metabolic pathway for cellular energy production, and HIV-1, emphasizing the dual impact of HIV-1 infection and the metabolic and mitochondrial effects of ART. The review highlights how HIV-1 infection disrupts oxidative phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral replication. ART can exacerbate metabolic dysregulation despite controlling viral replication, impacting mitochondrial DNA synthesis and enhancing reactive oxygen species production. These effects collectively contribute to significant changes in oxidative phosphorylation, influencing immune cell metabolism and function. Adenosine triphosphate (ATP) generated through oxidative phosphorylation can influence the metabolic landscape of infected cells through ATP-detected purinergic signaling and contributes to immunometabolic dysfunction. Future research should focus on identifying specific targets within this pathway and exploring the role of purinergic signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities, addressing both viral infection and its metabolic consequences.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Imunidade
4.
NPJ Vaccines ; 7(1): 87, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907918

RESUMO

The development of a maternal HIV vaccine to synergize with current antiretroviral drug prophylaxis can overcome implementation challenges and further reduce mother-to-child transmission (MTCT) of HIV. Both the epitope-specificity and autologous neutralization capacity of maternal HIV envelope (Env)-specific antibodies have been implicated in decreased risk of MTCT of HIV. Our goal was to determine if heterologous HIV Env immunization of SHIV.C.CH505-infected, ART-suppressed female rhesus macaques (RMs) could boost autologous Env-specific antibodies. SHIV.C.CH505-infected female RMs (n = 12), began a daily ART regimen at 12 weeks post-infection (wpi), which was continued for 12 weeks. Starting 2 weeks after ART initiation, RMs received 3 monthly immunizations with HIV b.63521/1086.C gp120 or placebo (n = 6/group) vaccine with adjuvant STR8S-C. Compared to the placebo-immunized animals, Env-vaccinated, SHIV-infected RMs exhibited enhanced IgG binding, avidity, and ADCC responses against the vaccine immunogens and the autologous SHIV.C.CH505 Env. Notably, the Env-specific memory B cells elicited by heterologous vaccination were dominated by cells that recognized the SHIV.C.CH505 Env, the antigen of primary exposure. Thus, vaccination of SHIV-infected, ART-suppressed RMs with heterologous HIV Envs can augment multiple components of the antibody response against the Env antigen of primary exposure, suggesting antigenic seniority. Our results suggest that a universal maternal HIV vaccination regimen can be developed to leverage antigenic seniority in targeting the maternal autologous virus pool.

5.
Pediatr Infect Dis J ; 40(5S): S5-S10, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34042904

RESUMO

Widespread availability of antiretroviral therapy among pregnant women living with HIV has greatly reduced the rate of mother-to-child transmission (MTCT) of HIV across the globe. However, while Joint United Nations Programme on HIV/AIDS has set targets to reduce the annual number of new pediatric HIV infections to fewer than 40,000 in 2018 and fewer than 20,000 in 2020, progress towards these targets has plateaued at an unacceptably high global estimate of greater than 160,000 children newly infected with HIV in 2018. Moreover, it has become clear that expansion of maternal antiretroviral therapy alone will not be sufficient to close the remaining gap and eliminate MTCT of HIV. Additional strategies such as maternal or infant passive and/or active immunization that synergize with maternal antiretroviral therapy will be required to end the pediatric HIV epidemic. In this review, we outline the landscape of existing maternal interventions and emerging maternal immune-based approaches to prevent MTCT of HIV.


Assuntos
Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Terapia Antirretroviral de Alta Atividade , Estudos Clínicos como Assunto , Feminino , Humanos , Imunização Passiva , Gravidez , Vacinação
6.
mSphere ; 5(3)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493720

RESUMO

A maternal vaccine capable of boosting neutralizing antibody (NAb) responses directed against circulating viruses in HIV-infected pregnant women could effectively decrease mother-to-child transmission of HIV. However, it is not known if an HIV envelope (Env) vaccine administered to infected pregnant women could enhance autologous virus neutralization and thereby reduce this risk of vertical HIV transmission. Here, we assessed autologous virus NAb responses in maternal plasma samples obtained from AIDS Vaccine Evaluation Group (AVEG) protocols 104 and 102, representing historical phase I safety and immunogenicity trials of recombinant HIV Env subunit vaccines administered to HIV-infected pregnant women (ClinicalTrials registration no. NCT00001041). Maternal HIV Env-specific plasma binding and neutralizing antibody responses were characterized before and after vaccination in 15 AVEG 104 (n = 10 vaccine recipients, n = 5 placebo recipients) and 2 AVEG 102 (n = 1 vaccine recipient, n = 1 placebo recipient) participants. Single-genome amplification (SGA) was used to obtain HIV env gene sequences of autologous maternal viruses for pseudovirus production and neutralization sensitivity testing in pre- and postvaccination plasma of HIV-infected pregnant vaccine recipients (n = 6 gp120, n = 1 gp160) and placebo recipients (n = 3). We detected an increase in Env subunit MN gp120-specific IgG binding in the group of vaccine recipients between the first immunization visit and the last visit at delivery (P = 0.027, 2-sided Wilcoxon test). While no difference was observed in the levels of autologous virus neutralization potency between groups, in both groups maternal plasma collected at delivery more effectively neutralized autologous viruses from early pregnancy than late pregnancy. Immunization strategies capable of further enhancing these autologous virus NAb responses in pregnant women will be important to block vertical transmission of HIV.IMPORTANCE Maternal antiretroviral therapy (ART) has effectively reduced but not eliminated the burden of mother-to-child transmission of HIV across the globe, as an estimated 160,000 children were newly infected with HIV in 2018. Thus, additional preventive strategies beyond ART will be required to close the remaining gap and end the pediatric HIV epidemic. A maternal active immunization strategy that synergizes with maternal ART could further reduce infant HIV infections. In this study, we found that two historic HIV Env vaccines did not enhance the ability of HIV-infected pregnant women to neutralize autologous viruses. Therefore, next-generation maternal HIV vaccine candidates must employ alternate approaches to achieve potent neutralizing antibody and perhaps nonneutralizing antibody responses to effectively impede vertical virus transmission. Moreover, these approaches must reflect the broad diversity of HIV strains and widespread availability of ART worldwide.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Adolescente , Adulto , Feminino , Infecções por HIV/imunologia , HIV-1 , Humanos , Gravidez , Gestantes , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
7.
Virology ; 548: 182-191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838941

RESUMO

Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Citomegalovirus/genética , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Masculino , Proteínas do Envelope Viral/genética , Adulto Jovem
8.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156815

RESUMO

Each year, >180,000 infants become infected via mother-to-child transmission (MTCT) of HIV despite the availability of effective maternal antiretroviral treatments, underlining the need for a maternal HIV vaccine. We characterized 224 maternal HIV envelope (Env)-specific IgG monoclonal antibodies (MAbs) from seven nontransmitting and transmitting HIV-infected U.S. and Malawian mothers and examined their neutralization activities against nontransmitted autologous circulating viruses and infant-transmitted founder (infant-T/F) viruses. Only a small subset of maternal viruses, 3 of 72 (4%), were weakly neutralized by maternal linear V3 epitope-specific IgG MAbs, whereas 6 out of 6 (100%) infant-T/F viruses were neutralization resistant to these V3-specific IgG MAbs. We also show that maternal-plasma broadly neutralizing antibody (bNAb) responses targeting the V3 glycan supersite in a transmitting woman may have selected for an N332 V3 glycan neutralization-resistant infant-T/F virus. These data have important implications for bNAb-eliciting vaccines and passively administered bNAbs in the setting of MTCT.IMPORTANCE Efforts to eliminate MTCT of HIV with antiretroviral therapy (ART) have met little success, with >180,000 infant infections each year worldwide. It is therefore likely that additional immunologic strategies that can synergize with ART will be required to eliminate MTCT of HIV. To this end, understanding the role of maternal HIV Env-specific IgG antibodies in the setting of MTCT is crucial. In this study, we found that maternal-plasma broadly neutralizing antibody (bNAb) responses can select for T/F viruses that initiate infection in infants. We propose that clinical trials testing the efficacy of single bNAb specificities should not include HIV-infected pregnant women, as a single bNAb might select for neutralization-resistant infant-T/F viruses.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Estudos de Coortes , Epitopos/imunologia , Feminino , Variação Genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Lactente , Malaui , Testes de Neutralização , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia
9.
Vaccines (Basel) ; 7(4)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561584

RESUMO

Congenital cytomegalovirus (cCMV) is the leading non-genetic cause of sensorineural hearing loss (SNHL), and efforts are geared towards prevention through vaccine development. Transmission rates following primary maternal infection occur at rates of 30-40%, however reported placental rates upon non-primary maternal infection is reported to be less than <4%. There is significant debate about whether this reduction in transmission rate is due to pre-existing maternal immunity, which could identify possible immunologic targets for vaccines. To address this question, we performed a systemic review of the literature using Preferred Reporting Items for Systematic Review and Analysis (PRISMA) guidelines. We identified cohort studies in high CMV seroprevalent (>80%) areas or in developing regions that examined a cohort of at least 50 infants for congenital CMV acquisition. We identified 19 articles that met criteria and were further categorized based on pre-conception serology, maternal seroprevalence, or previously known seroprevalence. Birth prevalence rates ranged from 0.4% to 6% (median 1.1%), with the studies reporting on clinical outcome (16/19 studies) noting the majority of infected infants as asymptomatic. We also utilized a recent study that differentiated primary maternal infections from chronic infections in a highly seropositive population to calculate a placental transmission rate in women with pre-existing immunity compared to that of no pre-existing immunity. This work confirms a low cCMV birth prevalence in highly seropositive populations, indicates via a calculated placental transmission rate that the CMV placental transmission rate is lower in non-primary infection than that of primary infection, and reveals gaps in data for further research aiming to identify targets for vaccine development.

10.
mBio ; 10(5)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488511

RESUMO

To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure.IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.


Assuntos
Antirretrovirais/imunologia , Antirretrovirais/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Animais , Biomarcadores , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Humanos , Imunoglobulina G/sangue , Cinética , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Carga Viral , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA