Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

2.
Nature ; 617(7962): 724-729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138081

RESUMO

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

3.
Hum Mol Genet ; 32(3): 462-472, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001342

RESUMO

YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Criança , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteínas 14-3-3/genética , Mutação de Sentido Incorreto , Encéfalo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações
5.
J Cell Mol Med ; 28(2): e18055, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113341

RESUMO

Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Triterpenos , Humanos , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo
6.
BMC Med ; 22(1): 115, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481272

RESUMO

BACKGROUND: The global dementia prevalence is surging, necessitating research into contributing factors. We aimed to investigate the association between metabolic syndrome (MetS), its components, serum uric acid (SUA) levels, and dementia risk. METHODS: Our prospective study comprised 466,788 participants without pre-existing MetS from the UK Biobank. We confirmed dementia diagnoses based on the ICD-10 criteria (F00-03). To evaluate the dementia risk concerning MetS, its components, and SUA levels, we applied Cox proportional hazards models, while adjusting for demographic factors. RESULTS: Over a median follow-up of 12.7 years, we identified 6845 dementia cases. Individuals with MetS had a 25% higher risk of all-cause dementia (hazard ratio [HR] = 1.25, 95% confidence interval [CI] = 1.19-1.31). The risk increased with the number of MetS components including central obesity, dyslipidemia for high-density lipoprotein (HDL) cholesterol, hypertension, hyperglycemia, and dyslipidemia for triglycerides. Particularly for those with all five components (HR = 1.76, 95% CI = 1.51-2.04). Dyslipidemia for HDL cholesterol, hypertension, hyperglycemia, and dyslipidemia for triglycerides were independently associated with elevated dementia risk (p < 0.01). MetS was further linked to an increased risk of all-cause dementia (11%) and vascular dementia (VD, 50%) among individuals with SUA levels exceeding 400 µmol/L (all-cause dementia: HR = 1.11, 95% CI = 1.02-1.21; VD: HR = 1.50, 95% CI = 1.28-1.77). CONCLUSIONS: Our study provides robust evidence supporting the association between MetS, its components, and dementia risk. These findings emphasize the importance of considering MetS and SUA levels in assessing dementia risk, offering valuable insights for prevention and management strategies.


Assuntos
Demência , Dislipidemias , Hiperglicemia , Hipertensão , Síndrome Metabólica , Humanos , Ácido Úrico , Estudos Prospectivos , Fatores de Risco , Hipertensão/complicações , HDL-Colesterol , Triglicerídeos , Dislipidemias/complicações , Demência/etiologia , Demência/complicações
7.
Small ; : e2400629, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682737

RESUMO

The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.

8.
Small ; 20(21): e2308247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174612

RESUMO

Iron oxide nanoparticles are a kind of important biomedical nanomaterials. Although their industrial-scale production can be realized by the conventional coprecipitation method, the controllability of their size and morphology remains a huge challenge. In this study, a kind of synthetic polypeptide Mms6-28 which mimics the magnetosome protein Mms6 is used for the bioinspired synthesis of Fe3O4 nanoparticles (NPs). Magnetosomes-like Fe3O4 NPs with uniform size, cubooctahedral shape, and smooth crystal surfaces are synthesized via a partial oxidation process. The Mms6-28 polypeptides play an important role by binding with iron ions and forming nucleation templates and are also preferably attached to the [100] and [111] crystal planes to induce the formation of uniform cubooctahedral Fe3O4 NPs. The continuous release and oxidation of Fe2+ from pre-formed Fe2+-rich precursors within the Mms6-28-based template make the reaction much controllable. The study affords new insights into the bioinspired- and bio-synthesis mechanism of magnetosomes.


Assuntos
Magnetossomos , Magnetossomos/química , Nanopartículas de Magnetita/química , Oxirredução
9.
J Med Virol ; 96(5): e29643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695269

RESUMO

Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1ß and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.


Assuntos
Inflamassomos , Piroptose , Piroptose/efeitos dos fármacos , Humanos , Animais , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Interleucina-18/metabolismo , Interleucina-18/genética , SARS-CoV-2 , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia
10.
Cytokine ; 176: 156514, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277928

RESUMO

BACKGROUND: Inflammation is linked to coronavirus disease 2019 (COVID-19)-related heart failure (HF), but the specific mechanisms are unclear. This study aimed to assess the relationship between specific inflammatory factors, such as interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, interferon (IFN)-α, and IFN-γ, and COVID-19-related HF. METHODS: We retrospectively identified 212 adult patients with COVID-19 who were hospitalized at Shanghai Public Health Center from March 1 to May 30, 2022 (including 80 patients with HF and 132 without HF). High-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), and inflammatory factors, including IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IFN-α, and IFN-γ, were compared between patients with COVID-19 with and without HF. RESULTS: Patients with COVID-19 having and not having HF differed with regard to sex, age, hs-CRP, PCT, and IL-6 levels (p < 0.05). Logistic regression analysis indicated a significant positive association between IL and 6 and HF (odds ratio = 1.055; 95 % confidence interval: 1.019-1.093, p < 0.005). Sex, age, and hs-CRP were also associated with HF. Women had a greater risk of HF than men. Older age, higher levels of hs-CRP, and IL-6 were associated with a greater risk of HF. CONCLUSIONS: In patients with COVID-19, increased IL-6 levels are significantly associated with COVID-19-related HF.


Assuntos
COVID-19 , Insuficiência Cardíaca , Adulto , Feminino , Humanos , Masculino , Proteína C-Reativa/metabolismo , China , COVID-19/complicações , Interleucina-10 , Interleucina-12 , Interleucina-17 , Interleucina-2 , Interleucina-4 , Interleucina-5 , Interleucina-6 , Interleucina-8 , Estudos Retrospectivos
11.
Opt Lett ; 49(2): 298-301, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194552

RESUMO

The distinctive properties and facile integration of 2D materials hold the potential to offer promising avenues for the on-chip photonic devices, and the expeditious and nondestructive identification and localization of diverse fundamental building blocks become key prerequisites. Here, we present a methodology grounded in digital image processing and deep learning, which effectively achieves the detection and precise localization of four monolayer-thick triangular single crystals of transition metal dichalcogenides with the mean average precision above 90%, and the approach demonstrates robust recognition capabilities across varied imaging conditions encompassing both white light and monochromatic light. This stands poised to serve as a potent data-driven tool enhancing the characterizing efficiency and holds the potential to expedite research initiatives and applications founded on the utilization of 2D materials.

12.
Catheter Cardiovasc Interv ; 103(4): 626-636, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38353507

RESUMO

BACKGROUND: Functional tricuspid regurgitation (FTR) following left-sided valve surgery (LSVS) is of clinical significance due to its high recurrence and mortality rates. Transcatheter therapy presents a potential solution to address this issue. AIMS: The study aimed to assess the safety and efficacy of transcatheter tricuspid valve replacement using the Lux-Valve system in a single center for patients with FTR after LSVS. METHODS: From June 2020 to April 2023, 20 patients with symptomatic severe FTR after LSVS were referred to our center. A multidisciplinary cardiac team evaluated these patients for suitability for transcatheter tricuspid valve replacement with Lux-Valve systems. Primary efficacy and safety endpoints were immediate postoperative tricuspid regurgitation severity ≤ moderate and major adverse events during follow-up. RESULTS: Twenty patients (average age 65.7 ± 7.4 years; 65.0% women) successfully underwent Lux-Valve system implantation after LSVS. All patients achieved ≤ moderate tricuspid regurgitation immediately after the procedure. Only one patient (5.0%) experienced a procedure-related major adverse event, leading to in-hospital mortality due to pulmonary infection. At the 6-month follow-up, 17 patients (89.5%) improved to New York Heart Association functional class I to II (p < 0.001). The overall Kansas City Cardiomyopathy Questionnaire score significantly improved (35.9 ± 6.7 points to 58.9 ± 5.8 points, p < 0.001). CONCLUSION: The Lux-Valve system was found to be safe and effective for treating FTR after LSVS. It resulted in positive early outcomes, including a significant reduction in FTR, improved functional status, and enhanced quality of life, especially in high-risk patients.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Tricúspide , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/cirurgia , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/cirurgia , Qualidade de Vida , Resultado do Tratamento , Cateterismo Cardíaco/métodos
13.
Eur Radiol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206403

RESUMO

OBJECTIVES: To develop and assess a radiomics-based prediction model for distinguishing T2/T3 staging of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) METHODS: A total of 118 patients with pathologically proven LHSCC were enrolled in this retrospective study. We performed feature processing based on 851 radiomic features derived from contrast-enhanced CT images and established multiple radiomic models by combining three feature selection methods and seven machine learning classifiers. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the models. The radiomic signature obtained from the optimal model and statistically significant morphological image characteristics were incorporated into the predictive nomogram. The performance of the nomogram was assessed by calibration curve and decision curve analysis. RESULTS: Using analysis of variance (ANOVA) feature selection and logistic regression (LR) classifier produced the best model. The AUCs of the training, validation, and test sets were 0.919, 0.857, and 0.817, respectively. A nomogram based on the model integrating the radiomic signature and a morphological imaging characteristic (suspicious thyroid cartilage invasion) exhibited C-indexes of 0.899 (95% confidence interval (CI) 0.843-0.955), fitting well in calibration curves (p > 0.05). Decision curve analysis further confirmed the clinical usefulness of the nomogram. CONCLUSIONS: The nomogram based on the radiomics model derived from contrast-enhanced CT images had good diagnostic performance for distinguishing T2/T3 staging of LHSCC. CLINICAL RELEVANCE STATEMENT: Accurate T2/T3 staging assessment of LHSCC aids in determining whether laryngectomy or laryngeal preservation therapy should be performed. The nomogram based on the radiomics model derived from contrast-enhanced CT images has the potential to predict the T2/T3 staging of LHSCC, which can provide a non-invasive and robust approach for guiding the optimization of clinical decision-making. KEY POINTS: • Combining analysis of variance with logistic regression yielded the optimal radiomic model. • A nomogram based on the CT-radiomic signature has good performance for differentiating T2 from T3 staging of laryngeal and hypopharyngeal squamous cell carcinoma. • It provides a non-invasive and robust approach for guiding the optimization of clinical decision-making.

14.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 204-211, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650133

RESUMO

Circular RNAs (circRNAs) are engaged in various types of cancers. This study aimed to investigate the roles of circ_0006743 (circ_JMJD1C) in breast cancer. The downstream of circ_JMJD1C and their interaction network was determined by bioinformatic analyses. Gene expression were analyzed through western blot and qRT-PCR assays. Functional assays were conducted in vitro and in vivo to verify circ_JMJD1C role in BC. FISH and confocal analysis indicated the cellular distribution of circ_JMJD1C. Luciferase reporter, RNA immune-precipitation (RIP) assays, as well as Pearson's correlation analysis, were implemented to test the relation of miR-182-5p, JMJD1C and circ_JMJD1C. Circ_JMJD1C and JMJD1C expression were both elevated, and their expression was positively correlated in BC. Circ_ JMJD1C knockdown hindered BC cell proliferation, invasion, and migration, along with epithelial-mesenchymal transition (EMT) in vitro and in vivo. Circ_JMJD1C facilitated BC progression by the miR-182-5p-JMJD1C axis. Circ_JMJD1C epigenetically upregulated SOX4. Circ_JMJD1C promotes the aggressiveness of BC via regulating miR-182-5p/JMJD1C/SOX4 axis. This may provide a novel and promising therapy targeting BC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Oxirredutases N-Desmetilantes , RNA Circular , Fatores de Transcrição SOXC , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
15.
Nano Lett ; 23(6): 2312-2320, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36861218

RESUMO

Positively charged Cu sites have been confirmed to significantly promote the production of multicarbon (C2) products from an electrochemical CO2 reduction reaction (CO2RR). However, the positively charged Cu has difficulty in existing under a strong negative bias. In this work, we design a Pdδ--Cu3N catalyst containing charge-separated Pdδ--Cuδ+ atom pair that can stabilize the Cuδ+ sites. In situ characterizations and density functional theory reveal that the first reported negatively charged Pdδ- sites exhibited a superior CO binding capacity together with the adjacent Cuδ+ sites, synergistically promoting the CO dimerization process to produce C2 products. As a result, we achieve a 14-fold increase in the C2 product Faradaic efficiency (FE) on Pdδ--Cu3N, from 5.6% to 78.2%. This work provides a new strategy for synthesizing negative valence atom-pair catalysts and an atomic-level modulation approach of unstable Cuδ+ sites in the CO2RR.

16.
Surg Innov ; 31(3): 256-262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565982

RESUMO

OBJECTIVE: In this case report, the auxiliary role of deep learning and 3-dimensional printing technology in the perioperative period was discussed to guide transcatheter aortic valve replacement and coronary stent implantation simultaneously. CASE PRESENTATION: A 68-year-old man had shortness of breath and chest tightness, accompanied by paroxysmal nocturnal dyspnea, 2 weeks before presenting at our hospital. Echocardiography results obtained in the outpatient department showed severe aortic stenosis combined with regurgitation and pleural effusion. The patient was first treated with closed thoracic drainage. After 800 mL of pleural effusion was collected, the patient's symptoms were relieved and he was admitted to the hospital. Preoperative transthoracic echocardiography showed severe bicuspid aortic valve stenosis combined with calcification and aortic regurgitation (mean pressure gradient, 42 mmHg). Preoperative computed tomography results showed a type I bicuspid aortic valve with severe eccentric calcification. The leaflet could be seen from the left coronary artery plane, which indicated an extremely high possibility of coronary obstruction. After preoperative imaging assessment, deep learning and 3-dimensional printing technology were used for evaluation and simulation. Guided transcatheter aortic valve replacement and a coronary stent implant were completed successfully. Postoperative digital subtraction angiography showed that the bioprosthesis and the chimney coronary stent were in ideal positions. Transesophageal echocardiography showed normal morphology without paravalvular regurgitation. CONCLUSION: The perioperative guidance of deep learning and 3-dimensional printing are of great help for surgical strategy formulation in patients with severe bicuspid aortic valve stenosis with calcification and high-risk coronary obstruction.


Assuntos
Estenose da Valva Aórtica , Aprendizado Profundo , Impressão Tridimensional , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/métodos , Masculino , Idoso , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Stents , Valva Aórtica/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/anormalidades , Insuficiência da Valva Aórtica/cirurgia , Insuficiência da Valva Aórtica/diagnóstico por imagem
17.
Angew Chem Int Ed Engl ; 63(16): e202319936, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372428

RESUMO

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

18.
J Neuroinflammation ; 20(1): 122, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217991

RESUMO

BACKGROUND: Autoimmune neuropathies are common peripheral nervous system (PNS) disorders. Environmental influences and dietary components are known to affect the course of autoimmune diseases. Intestinal microorganisms can be dynamically regulated through diet, and this study combines intestinal microorganisms with diseases to open up new therapeutic ideas. METHODS: In Lewis rats, a model of EAN was established with P0 peptide, Lactobacillus were used as treatment, serum T-cell ratio, inflammatory factors, sciatic neuropathological changes, and pathological inflammatory effects on intestinal mucosa were detected, and fecal metabolomics and 16 s microbiome analysis were performed to further explore the mechanism. RESULTS: In the EAN rat model, Lactobacillus paracasei L9 (LP) could dynamically regulate the CD4+/CD8+T balance in serum, reduce serum IL-1, IL-6 and TNF-α expression levels, improve sciatic nerve demyelination and inflammatory infiltration, and reduce nervous system score. In the rat model of EAN, intestinal mucosa was damaged. Occludin and ZO-1 were downregulated. IL-1, TNF-α and Reg3γ were upregulated. LP gavage induced intestinal mucosa recovery; occludin and ZO-1 upregulation; IL-1, TNF-α and Reg3γ downregulation. Finally, metabolomics and 16 s microbiome analysis were performed, and differential metabolites were enriched with an important metabolic pathway, arginine and proline metabolism. CONCLUSION: LP improved EAN in rats by influencing intestinal community and the lysine and proline metabolism.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Neurite Autoimune Experimental , Ratos , Animais , Neurite Autoimune Experimental/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ocludina/metabolismo , Ratos Endogâmicos Lew , Nervo Isquiático/patologia , Progressão da Doença , Interleucina-1/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Prolina/uso terapêutico
19.
J Med Virol ; 95(8): e28976, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37522339

RESUMO

The lung-brain axis is an emerging biological pathway that is being investigated in relation to microbiome medicine. Increasing evidence suggests that pulmonary viral infections can lead to distinct pathological imprints in the brain, so there is a need to explore and understand this mechanism and find possible interventions. This study used respiratory syncytial virus (RSV) infection in mice as a model to establish the potential lung-brain axis phenomenon. We hypothesized that RSV infection could disrupt the lung microbiota, compromise immune barriers, and induce a significant shift in microglia phenotype. One week old mice were randomized into the control, Ampicillin, RSV, and RSV+Ampicillin treated groups (n = 6 each). Seven days after the respective treatments, the mice were anaesthetized. Immunofluorescence and real-time qRT-PCR was used to detect virus. Hematoxylin-eosin staining was used to detect histopathology. Malondialdehyde and superoxide dismutase were used to determine oxidative stress and antioxidant capacity. Real-time qRT-PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure Th differentiation in the lung. Real-time qRT-PCR, ELISA, and confocal immunofluorescence were used to determine the microglia phenotype. 16S DNA technology was used to detect lung microflora. RSV infection induces elevated oxidative stress, reduced antioxidant, and significant dysbacteriosis in the lungs of mice. Pulmonary microbes were found to enhance Th1-type immunoreactivity induced by RSV infection and eventually induced M1-type dominant microglia in the brains of mice. This study was able to establish a correlation between the pulmonary microbiome and brain function. Therefore, we recommend a large sample size study with robust data analysis for the long-term effects of antibiotics and RSV infection on brain physiology.


Assuntos
Microbiota , Infecções por Vírus Respiratório Sincicial , Camundongos , Animais , Antioxidantes/metabolismo , Microglia , Pulmão/patologia , Ampicilina/metabolismo , Ampicilina/farmacologia , Camundongos Endogâmicos BALB C
20.
J Med Virol ; 95(1): e28390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484389

RESUMO

Respiratory syncytial virus (RSV) is one of the main pathogens of viral pneumonia and bronchiolitis in infants and young children and life-threatening diseases among infants and young children. GTPases of the immune-associated protein family (GIMAP) are new family members of immune-associated GTPases. In recent years, much attention has been paid to the function of the GIMAP family in coping with infection and stress. Gimap5 is a member of the GIMAP family, which may be correlated with anti-infectious immunity. RT-qPCR, Western blot, and indirect immunofluorescence (IFA) were used to detect the expression of Gimap5, M6PR and IGF1R(the major RSV receptor). Transmission electron microscopy (TEM) was used to detect the degradation of RSV in Gimap5-overexpressed or -silent cell lines. Computer virtual screening was used to screen small molecule compounds targeting Gimap5 and the anti-RSV effects were explored through in vivo and in vitro experiments. GIMAP5 and M6PR were significantly downregulated after RSV infection. Gimap5 accelerated RSV degradation in lysosomes by interacting with M6PR, and further prevented RSV invasion by downregulating the expression of RSV surface receptor IGF1R. Three small molecule compounds targeting Gimap5 were confirmed to be the agonists of Gimap5. The three compounds effectively inhibited RSV infection and RSV-induced complications. Gimap5 promotes the degradation of RSV and its receptor through interacting with M6PR. Gimap5 agonists can effectively reduce RSV infection and RSV-induced complication in vivo and in vitro, which provides a new choice for the treatment of RSV.


Assuntos
GTP Fosfo-Hidrolases , Receptor IGF Tipo 2 , Infecções por Vírus Respiratório Sincicial , Criança , Pré-Escolar , Humanos , Lactente , Bronquiolite/metabolismo , Bronquiolite/virologia , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano , Receptor IGF Tipo 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA