Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 564(7734): 64-70, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464347

RESUMO

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Assuntos
Regulação da Expressão Gênica , Genômica , Anfioxos/genética , Vertebrados/genética , Animais , Padronização Corporal/genética , Metilação de DNA , Humanos , Anfioxos/embriologia , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Transcriptoma/genética
2.
Genome Res ; 30(2): 164-172, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32033943

RESUMO

Cannabis sativa-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.


Assuntos
Cannabis/genética , Segregação de Cromossomos/genética , Evolução Molecular , Processos de Determinação Sexual/genética , Cannabis/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Dronabinol/biossíntese , Genoma de Planta/genética , RNA-Seq , Cromossomos Sexuais/genética
3.
Proc Natl Acad Sci U S A ; 117(15): 8546-8553, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205429

RESUMO

In human populations, women consistently outlive men, which suggests profound biological foundations for sex differences in survival. Quantifying whether such sex differences are also pervasive in wild mammals is a crucial challenge in both evolutionary biology and biogerontology. Here, we compile demographic data from 134 mammal populations, encompassing 101 species, to show that the female's median lifespan is on average 18.6% longer than that of conspecific males, whereas in humans the female advantage is on average 7.8%. On the contrary, we do not find any consistent sex differences in aging rates. In addition, sex differences in median adult lifespan and aging rates are both highly variable across species. Our analyses suggest that the magnitude of sex differences in mammalian mortality patterns is likely shaped by local environmental conditions in interaction with the sex-specific costs of sexual selection.


Assuntos
Envelhecimento/fisiologia , Evolução Biológica , Longevidade , Mamíferos/fisiologia , Animais , Feminino , Masculino , Caracteres Sexuais
4.
Mol Biol Evol ; 38(3): 805-818, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32926156

RESUMO

About 15,000 angiosperm species (∼6%) have separate sexes, a phenomenon known as dioecy. Why dioecious taxa are so rare is still an open question. Early work reported lower species richness in dioecious compared with nondioecious sister clades, raising the hypothesis that dioecy may be an evolutionary dead-end. This hypothesis has been recently challenged by macroevolutionary analyses that detected no or even positive effect of dioecy on diversification. However, the possible genetic consequences of dioecy at the population level, which could drive the long-term fate of dioecious lineages, have not been tested so far. Here, we used a population genomics approach in the Silene genus to look for possible effects of dioecy, especially for potential evidence of evolutionary handicaps of dioecy underlying the dead-end hypothesis. We collected individual-based RNA-seq data from several populations in 13 closely related species with different sexual systems: seven dioecious, three hermaphroditic, and three gynodioecious species. We show that dioecy is associated with increased genetic diversity, as well as higher selection efficacy both against deleterious mutations and for beneficial mutations. The results hold after controlling for phylogenetic inertia, differences in species census population sizes and geographic ranges. We conclude that dioecious Silene species neither show signs of increased mutational load nor genetic evidence for extinction risk. We discuss these observations in the light of the possible demographic differences between dioecious and self-compatible hermaphroditic species and how this could be related to alternatives to the dead-end hypothesis to explain the rarity of dioecy.


Assuntos
Adaptação Biológica , Evolução Biológica , Variação Genética , Seleção Genética , Silene/genética , Flores/anatomia & histologia , Reprodução/genética , Silene/anatomia & histologia
5.
New Phytol ; 233(4): 1636-1642, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34342006

RESUMO

The genetic basis and evolution of sex determination in dioecious plants is emerging as an active area of research with exciting advances in genome sequencing and analysis technologies. As the sole species within the sister lineage to all other extant flowering plants, Amborella trichopoda is an important model for understanding the evolution and development of flowers. Plants typically produce only male or female flowers, but sex determination mechanisms are unknown for the species. Sequence data derived from plants of natural origin and an F1 mapping population were used to identify sex-linked genes and the nonrecombining region. Amborella trichopoda has a ZW sex determination system. Analysis of genes in a 4 Mb nonrecombining sex-determination region reveals recent divergence of Z and W gametologs, and few Z- and W-specific genes. The sex chromosomes of A. trichopoda evolved less than 16.5 Myr ago, long after the divergence of the extant angiosperms.


Assuntos
Magnoliopsida , Flores/genética , Magnoliopsida/genética , Filogenia , Cromossomos Sexuais/genética
6.
New Phytol ; 231(4): 1599-1611, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33978992

RESUMO

We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.


Assuntos
Cannabis , Humulus , Cannabis/genética , Cromossomos de Plantas/genética , Evolução Molecular , Humulus/genética , Filogenia , Cromossomos Sexuais/genética
7.
Mol Ecol ; 26(5): 1225-1241, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28101895

RESUMO

Dioecy, the coexistence of separate male and female individuals in a population, is a rare but phylogenetically widespread sexual system in flowering plants. While research has concentrated on why and how dioecy evolves from hermaphroditism, the question of why dioecy is rare, despite repeated transitions to it, has received much less attention. Previous phylogenetic and theoretical studies have suggested that dioecy might be an evolutionary dead end. However, recent research indicates that the phylogenetic support for this hypothesis is attributable to a methodological bias and that there is no evidence for reduced diversification in dioecious angiosperms. The relative rarity of dioecy thus remains a puzzle. Here, we review evidence for the hypothesis that dioecy might be rare not because it is an evolutionary dead end, but rather because it easily reverts to hermaphroditism. We review what is known about transitions between hermaphroditism and dioecy, and conclude that there is an important need to consider more widely the possibility of transitions away from dioecy, both from an empirical and a theoretical point of view, and by combining tools from molecular evolution and insights from ecology.


Assuntos
Evolução Biológica , Magnoliopsida/genética , Magnoliopsida/fisiologia , Evolução Molecular , Filogenia , Reprodução
8.
PLoS Biol ; 10(4): e1001308, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529744

RESUMO

Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ∼10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.


Assuntos
Cromossomos de Plantas/genética , Mecanismo Genético de Compensação de Dose , Evolução Molecular , Cromossomos Sexuais/genética , Silene/genética , Alelos , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
9.
Cell Mol Life Sci ; 71(8): 1383-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24173285

RESUMO

Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.


Assuntos
Evolução Biológica , Genes Ligados ao Cromossomo X/genética , Mamíferos/genética , Modelos Genéticos , Filogenia , Inativação do Cromossomo X/genética , Animais
10.
Proc Natl Acad Sci U S A ; 109(14): 5346-51, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22392987

RESUMO

How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.


Assuntos
Mecanismo Genético de Compensação de Dose , Inativação do Cromossomo X , Aneuploidia , Animais , Feminino , Humanos , Masculino
11.
Plant Physiol ; 160(3): 1407-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961129

RESUMO

Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Evolução Molecular , Família Multigênica/genética , Vitis/enzimologia , Vitis/genética , Aciltransferases/metabolismo , Agrobacterium/metabolismo , Aminoácidos/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Modelos Moleculares , Filogenia , Estilbenos/química , Estilbenos/metabolismo , Estresse Fisiológico/genética , Nicotiana/microbiologia
12.
PLoS Biol ; 8(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957185

RESUMO

Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.


Assuntos
Evolução Biológica , Mamíferos/genética , Cromossomo X/genética , Animais , Feminino , Perfilação da Expressão Gênica , Genes Ligados ao Cromossomo X , Humanos , Masculino , Camundongos , MicroRNAs/genética , Filogenia , Espermatogênese/genética
13.
Mech Ageing Dev ; 212: 111799, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948470

RESUMO

In many animal species, including humans, males have shorter lifespan and show faster survival aging than females. This differential increase in mortality between sexes could result from the accumulation of deleterious mutations in the mitochondrial genome of males due to the maternal mode of mtDNA inheritance. To date, empirical evidence supporting the existence of this mechanism - called the Mother Curse hypothesis - remains largely limited to a few study cases in humans and Drosophila. In this study, we tested whether the Mother Curse hypothesis accounts for sex differences in lifespan and aging rate across 128 populations of mammals (60 and 68 populations studied in wild and captive conditions, respectively) encompassing 104 species. We found that adult lifespan decreases with increasing mtDNA neutral substitution rate in both sexes in a similar way in the wild - but not in captivity. Moreover, the aging rate marginally increased with neutral substitution rate in males and females in the wild. Overall, these results indicate that the Mother Curse hypothesis is not supported across mammals. We further discuss the implication of these findings for our understanding of the evolution of sex differences in mortality and aging.


Assuntos
Longevidade , Mães , Humanos , Animais , Feminino , Masculino , Longevidade/genética , Caracteres Sexuais , Envelhecimento , DNA Mitocondrial/genética , Drosophila , Mamíferos
14.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210219, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306888

RESUMO

In animals, males and females can display markedly different longevity (also called sex gaps in longevity, SGL). Sex chromosomes contribute to establishing these SGLs. X-hemizygosity and toxicity of the Y chromosomes are two mechanisms that have been suggested to reduce male longevity (Z-hemizygosity and W toxicity in females in ZW systems). In plants, SGLs are known to exist, but the role of sex chromosomes remains to be established. Here, by using adult sex ratio as a proxy for measuring SGLs, we explored the relationship between sex chromosomes and SGLs across 43 plant species. Based on the knowledge accumulated in animals, we specifically asked whether: (i) species with XY systems tend to have female-biased sex ratios (reduced male longevity) and species with ZW ones tend to have male-biased sex ratios (reduced female longevity); and (ii) this pattern was stronger in heteromorphic systems compared to homomorphic ones. Our results tend to support these predictions although we lack statistical power because of a small number of ZW systems and the absence of any heteromorphic ZW system in the dataset. We discuss the implications of these findings, which we hope will stimulate further research on sex differences in lifespan and ageing across plants. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Longevidade , Razão de Masculinidade , Animais , Evolução Molecular , Feminino , Masculino , Cromossomos Sexuais/genética
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210222, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306896

RESUMO

In a minority of flowering plants, separate sexes are genetically determined by sex chromosomes. The Y chromosome has a non-recombining region that degenerates, causing a reduced expression of Y genes. In some species, the lower Y expression is accompanied by dosage compensation (DC), a mechanism that re-equalizes male and female expression and/or brings XY male expression back to its ancestral level. Here, we review work on DC in plants, which started as early as the late 1960s with cytological approaches. The use of transcriptomics fired a controversy as to whether DC existed in plants. Further work revealed that various plants exhibit partial DC, including a few species with young and homomorphic sex chromosomes. We are starting to understand the mechanisms responsible for DC in some plants, but in most species, we lack the data to differentiate between global and gene-by-gene DC. Also, it is unknown why some species evolve many dosage compensated genes while others do not. Finally, the forces that drive DC evolution remain mysterious, both in plants and animals. We review the multiple evolutionary theories that have been proposed to explain DC patterns in eukaryotes with XY or ZW sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais , Animais , Evolução Molecular , Feminino , Masculino , Plantas/genética , Cromossomos Sexuais/genética
16.
Evolution ; 76(2): 346-356, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878663

RESUMO

Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.


Assuntos
Caracteres Sexuais , Cromossomos Sexuais , Envelhecimento/genética , Anfíbios/genética , Animais , Feminino , Masculino , Processos de Determinação Sexual , Cromossomo Y
17.
BMC Genomics ; 12: 376, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21791039

RESUMO

BACKGROUND: The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. RESULTS: A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. CONCLUSION: The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms.


Assuntos
Bases de Dados Genéticas , Etiquetas de Sequências Expressas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Silene/genética , Transcriptoma/genética , Dianthus/genética , Fenômenos Ecológicos e Ambientais , Evolução Molecular , Tamanho do Genoma , Heterozigoto , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico
18.
Curr Biol ; 18(7): 545-9, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18394889

RESUMO

The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genes de Plantas , Silene/genética , Animais , Elementos de DNA Transponíveis , Expressão Gênica , Íntrons , Cromossomo Y
19.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33764439

RESUMO

We propose a method, SDpop, able to infer sex-linkage caused by recombination suppression typical of sex chromosomes. The method is based on the modeling of the allele and genotype frequencies of individuals of known sex in natural populations. It is implemented in a hierarchical probabilistic framework, accounting for different sources of error. It allows statistical testing for the presence or absence of sex chromosomes, and detection of sex-linked genes based on the posterior probabilities in the model. Furthermore, for gametologous sequences, the haplotype and level of nucleotide polymorphism of each copy can be inferred, as well as the divergence between them. We test the method using simulated data, as well as data from both a relatively recent and an old sex chromosome system (the plant Silene latifolia and humans) and show that, for most cases, robust predictions are obtained with 5 to 10 individuals per sex.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Cromossomos de Plantas/genética , Cromossomos Sexuais/genética , Genes de Plantas , Genes Ligados ao Cromossomo X , Genes Ligados ao Cromossomo Y , Haplótipos , Humanos , Modelos Genéticos , Polimorfismo Genético , Recombinação Genética , Silene/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200124, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866802

RESUMO

We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Epigênese Genética , Evolução Molecular , Invertebrados/genética , Plantas/genética , Cromossomos Sexuais/genética , Vertebrados/genética , Animais , Elementos de DNA Transponíveis , Mecanismo Genético de Compensação de Dose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA