Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712990

RESUMO

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/biossíntese , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células HEK293 , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno , Humanos , Vigilância Imunológica , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Melanoma/imunologia , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia
2.
Nucleic Acids Res ; 51(D1): D291-D296, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36165892

RESUMO

snoDB is an interactive database of human small nucleolar RNAs (snoRNAs) that includes up-to-date information on snoRNA features, genomic location, conservation, host gene, snoRNA-RNA targets and snoRNA abundance and provides links to other resources. In the second edition of this database (snoDB 2.0), we added an entirely new section on ribosomal RNA (rRNA) chemical modifications guided by snoRNAs with easy navigation between the different rRNA versions used in the literature and experimentally measured levels of modification. We also included new layers of information, including snoRNA motifs, secondary structure prediction, snoRNA-protein interactions, copy annotations and low structure bias expression data in a wide panel of tissues and cell lines to bolster functional probing of snoRNA biology. Version 2.0 features updated identifiers, more links to external resources and duplicate entry resolution. As a result, snoDB 2.0, which is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/snoDB/, represents a one-stop shop for snoRNA features, rRNA modification targets, functional impact and potential regulators.


Assuntos
Bases de Dados Genéticas , RNA Nucleolar Pequeno , Humanos , Genômica , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo
3.
BMC Cancer ; 22(1): 526, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545761

RESUMO

BACKGROUND: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. METHODS: Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levels-related breast tumours. RESULTS: We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. CONCLUSION: Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper- but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors.


Assuntos
Neoplasias da Mama , Biomarcadores/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas Cromossômicas não Histona , Feminino , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
4.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651364

RESUMO

Influenza A viruses (IAV) are known to modulate and "hijack" several cellular host mechanisms, including gene splicing and RNA maturation machineries. These modulations alter host cellular responses and enable an optimal expression of viral products throughout infection. The interplay between the host protein p53 and IAV, in particular through the viral nonstructural protein NS1, has been shown to be supportive for IAV replication. However, it remains unknown whether alternatively spliced isoforms of p53, known to modulate p53 transcriptional activity, are affected by IAV infection and contribute to IAV replication. Using a TP53 minigene, which mimics intron 9 alternative splicing, we have shown here that the NS1 protein of IAV changes the expression pattern of p53 isoforms. Our results demonstrate that CPSF4 (cellular protein cleavage and polyadenylation specificity factor 4) independently and the interaction between NS1 and CPSF4 modulate the alternative splicing of TP53 transcripts, which may result in the differential activation of p53-responsive genes. Finally, we report that CPSF4 and most likely beta and gamma spliced p53 isoforms affect both viral replication and IAV-associated type I interferon secretion. All together, our data show that cellular p53 and CPSF4 factors, both interacting with viral NS1, have a crucial role during IAV replication that allows IAV to interact with and alter the expression of alternatively spliced p53 isoforms in order to regulate the cellular innate response, especially via type I interferon secretion, and perform efficient viral replication.IMPORTANCE Influenza A viruses (IAV) constitute a major public health issue, causing illness and death in high-risk populations during seasonal epidemics or pandemics. IAV are known to modulate cellular pathways to promote their replication and avoid immune restriction via the targeting of several cellular proteins. One of these proteins, p53, is a master regulator involved in a large panel of biological processes, including cell cycle arrest, apoptosis, or senescence. This "cellular gatekeeper" is also involved in the control of viral infections, and viruses have developed a wide diversity of mechanisms to modulate/hijack p53 functions to achieve an optimal replication in their hosts. Our group and others have previously shown that p53 activity is finely modulated by different multilevel mechanisms during IAV infection. Here, we characterized IAV nonstructural protein NS1 and the cellular factor CPSF4 as major partners involved in the IAV-induced modulation of the TP53 alternative splicing that was associated with a strong modulation of p53 activity and notably the p53-mediated antiviral response.


Assuntos
Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteína Supressora de Tumor p53/imunologia , Proteínas não Estruturais Virais/imunologia , Fatores de Poliadenilação e Clivagem de mRNA/imunologia , Células A549 , Processamento Alternativo/imunologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata/imunologia , Influenza Humana/virologia , Interferons/imunologia , Replicação Viral/imunologia
5.
Proc Natl Acad Sci U S A ; 114(49): 12934-12939, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158377

RESUMO

Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.


Assuntos
Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Metilação
6.
Int J Mol Sci ; 20(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862090

RESUMO

Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of "specialized ribosomes", which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today.


Assuntos
Eucariotos/genética , Eucariotos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Células Eucarióticas , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo
7.
Carcinogenesis ; 35(12): 2706-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25269805

RESUMO

G-quadruplex (G4) structures in intron 3 of the p53 pre-mRNA modulate intron 2 splicing, altering the balance between the fully spliced p53 transcript (FSp53, encoding full-length p53) and an incompletely spliced transcript retaining intron 2 (p53I2 encoding the N-terminally truncated Δ40p53 isoform). The nucleotides forming G4s overlap the polymorphism rs17878362 (A1 wild-type allele, A2 16-base pair insertion) which is in linkage disequilibrium with rs1642785 in intron 2 (c.74+38 G>C). Biophysical and biochemical analyses show rs17878362 A2 alleles form similar G4 structures as A1 alleles although their position is shifted with respect to the intron 2 splice acceptor site. In addition basal FSp53 and p53I2 levels showed allele specific differences in both p53-null cells transfected with reporter constructs or lymphoblastoid cell lines. The highest FSp53 and p53I2 levels were associated with combined rs1642785-GG/rs17878362-A1A1 alleles, whereas the presence of rs1642785-C with either rs17878362 allele was associated with lower p53 pre-mRNA, total TP53, FSp53 and p53I2 levels, due to the lower stability of transcripts containing rs1642785-C. Treatment of lymphoblastoid cell with the G4 binding ligands 360A or PhenDC3 or with ionizing radiation increased FSp53 levels only in cells with rs17878362 A1 alleles, suggesting that under this G4 configuration full splicing is favoured. These results demonstrate the complex effects of intronic TP53 polymorphisms on G4 formation and identify a new role for rs1642785 on mRNA splicing and stability, and thus on the differential expression of isoform-specific transcripts of the TP53 gene.


Assuntos
Adenocarcinoma/genética , Processamento Alternativo/genética , Neoplasias da Mama/genética , Quadruplex G/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Íntrons/genética , Polimorfismo Genético/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Éxons , Feminino , Genótipo , Humanos , Isoformas de Proteínas , RNA Mensageiro/genética , Radiação Ionizante , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Carcinogenesis ; 35(4): 807-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24336192

RESUMO

Germline TP53 mutations predispose to multiple cancers defining Li-Fraumeni/Li-Fraumeni-like syndrome (LFS/LFL), a disease with large individual disparities in cancer profiles and age of onset. G-quadruplexes (G4s) are secondary structural motifs occurring in guanine tracks, with regulatory effects on DNA and RNA. We analyzed 85 polymorphisms within or near five predicted G4s in TP53 in search of modifiers of penetrance of LFS/LFL in Brazilian cancer families with (n = 35) or without (n = 110) TP53 mutations. Statistical analyses stratified on family structure showed that cancer tended to occur ~15 years later in mutation carriers who also carried the variant alleles of two polymorphisms within predicted G4-forming regions, rs17878362 (TP53 PIN3, 16 bp duplication in intron 3; P = 0.082) and rs17880560 (6 bp duplication in 3' flanking region; P = 0.067). Haplotype analysis showed that this inverse association was driven by the polymorphic status of the remaining wild-type (WT) haplotype in mutation carriers: in carriers with a WT haplotype containing at least one variant allele of rs17878362 or rs17880560, cancer occurred ~15 years later than in carriers with other WT haplotypes (P = 0.019). No effect on age of cancer onset was observed in subjects without a TP53 mutation. The G4 in intron 3 has been shown to regulate alternative p53 messenger RNA splicing, whereas the biological roles of predicted G4s in the 3' flanking region remain to be elucidated. In conclusion, this study demonstrates that G4 polymorphisms in haplotypes of the WT TP53 allele have an impact on LFS/LFL penetrance in germline TP53 mutation carriers.


Assuntos
Idade de Início , Quadruplex G , Genes p53 , Triagem de Portadores Genéticos , Neoplasias/genética , Polimorfismo Genético , Sequência de Bases , DNA , Humanos , Dados de Sequência Molecular
9.
J Gen Virol ; 94(Pt 5): 985-995, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23343627

RESUMO

While post-transcriptional regulation of gene expression by microRNAs (miRNAs) has been shown to be involved in influenza virus replication cycle, only a few studies have further investigated this aspect in a human cellular model infected with human influenza viruses. In this study, we performed miRNA global profiling in human lung epithelial cells (A549) infected by two different subtypes of human influenza A viruses (H1N1 and H3N2). We identified a common miRNA signature in response to infection by the two different strains, highlighting a pool of five miRNAs commonly deregulated, which are known to be involved in the innate immune response or apoptosis. Among the five miRNA hits, the only upregulated miRNA in response to influenza infection corresponded to miR-146a. Based on a previously published gene expression dataset, we extracted inversely correlated miR-146a target genes and determined their first-level interactants. This functional analysis revealed eight distinct biological processes strongly associated with these interactants: Toll-like receptor pathway, innate immune response, cytokine production and apoptosis. To better understand the biological significance of miR-146a upregulation, using a reporter assay and a specific anti-miR-146a inhibitor, we confirmed that infection increased the endogenous miR-146a promoter activity and that inhibition of miR-146a significantly increased viral propagation. Altogether, our results suggest a functional role of miR-146a in the outcome of influenza infection, at the crossroads of several biological processes.


Assuntos
Regulação Viral da Expressão Gênica/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , MicroRNAs/genética , Apoptose/genética , Linhagem Celular , Regulação para Baixo , Células Epiteliais/imunologia , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Pulmão/citologia , Pulmão/virologia , MicroRNAs/imunologia , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Regulação para Cima
10.
J Virol ; 86(16): 8452-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22647703

RESUMO

Previous studies have described the role of p53 isoforms, including p53ß and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53ß and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53ß and Δ133p53α acting as regulators of viral production in a p53-dependent manner.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Vírus da Influenza A/patogenicidade , Proteína Supressora de Tumor p53/biossíntese , Linhagem Celular , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Humanos , Influenza Humana , Isoformas de Proteínas/biossíntese
11.
Mol Oncol ; 17(1): 27-36, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370117

RESUMO

Resistance of advanced hormone-dependent endometrial carcinoma to endocrine therapy remains a worldwide clinical issue. We recently reported that the combination of Vistusertib (V, mTOR inhibitor) and Anastrozole (A, aromatase inhibitor) improves the progression-free rate compared to Anastrozole alone. However, a better patient selection based on biomarkers would improve patient outcome. We evaluate for the first time the usage of ribosome biogenesis (RiBi) factors as a source of innovative markers. Using 47 FFPE tumours (A n = 18; V + A n = 29), 32 blood samples (A n = 13; V + A n = 19) and 30 samples of total RNAs (A n = 12; V + A n = 18) from the VICTORIA clinical trial, we observed an association between RiBi-associated markers and drug activity or prediction of treatment response. NOP10 and NHP2 mRNA levels were significantly higher in non-responders compared to responders in the Vistusertib + Anastrozole arm (P = 0.0194 and P = 0.0002 respectively; i.e. 8 weeks progression-free survival as endpoint). This study provides RiBi-based markers relevant for a better selection of patients with advanced endometrial carcinoma by predicting the response of endocrine therapy combined with mTOR inhibitor.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Humanos , Feminino , Anastrozol/uso terapêutico , Nitrilas/uso terapêutico , Triazóis/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Biomarcadores , Serina-Treonina Quinases TOR , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Ribossomos , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Hormonais/uso terapêutico
12.
Neuro Oncol ; 25(12): 2191-2206, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531290

RESUMO

BACKGROUND: High-grade adult-type diffuse gliomas (HGGs) constitute a heterogeneous group of aggressive tumors that are mostly incurable. Recent advances highlighting the contribution of ribosomes to cancer development have offered new clinical perspectives. Here, we uncovered that isocitrate dehydrogenase (IDH)wt and IDHmut HGGs display distinct alterations of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, which could constitute novel hallmarks that can be exploited for the management of these pathologies. METHODS: We analyzed (1) the ribosomal RNA 2'O-ribose methylation (rRNA 2'Ome) using RiboMethSeq and in-house developed bioinformatics tools (https://github.com/RibosomeCRCL/ribomethseq-nfandrRMSAnalyzer) on 3 independent cohorts compiling 71 HGGs (IDHwt n = 30, IDHmut n = 41) and 9 non-neoplastic samples, (2) the expression of ribosome biogenesis factors using medium throughput RT-qPCR as a readout of ribosome biogenesis, and (3) the sensitivity of 5 HGG cell lines to RNA Pol I inhibitors (CX5461, BMH-21). RESULTS: Unsupervised analysis demonstrated that HGGs could be distinguished based on their rRNA 2'Ome epitranscriptomic profile, with IDHwt glioblastomas displaying the most significant alterations of rRNA 2'Ome at specific sites. In contrast, IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblastoma, while all HGG spheroids display a similar cytotoxicity to BMH-21. CONCLUSIONS: In HGGs, IDH mutational status is associated with specific alterations of the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Glioma/patologia , Metilação , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia , Mutação
13.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612237

RESUMO

Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.

14.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188718, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304296

RESUMO

Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.


Assuntos
Transição Epitelial-Mesenquimal , Biossíntese de Proteínas , Transdiferenciação Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Ribossomos/genética , Transcriptoma
15.
JAMA Oncol ; 8(7): 1001-1009, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551299

RESUMO

Importance: Endometrial cancer is often hormone-dependent and treated with aromatase inhibitors. The PI3K-AKT-mTOR pathway deregulation observed in endometrial cancer drives hormonal resistance, thus supporting the rationale of combining mTOR inhibitor with endocrine therapy. Objective: To evaluate the safety and efficacy of vistusertib in combination with anastrozole in the treatment of women with hormone receptor-positive recurrent or metastatic endometrial cancer. Design, Settings, and Participants: The VICTORIA study was a multicenter, open-label, randomized clinical trial that accrued 75 patients with hormone receptor-positive recurrent or metastatic endometrial cancer from 12 cancer centers in France in April 2016 to October 2019. After a safety run-in period, a Simon 2-stage design was used. Data analyses were performed from December 11, 2020, to March 11, 2021. Interventions: Patients were randomized in a 2:1 ratio to oral vistusertib (125 mg twice daily 2 days per week) and oral anastrozole (1 mg daily) in the combination vistusertib with anastrozole arm (V+A arm) or oral anastrozole alone (A arm). Main Outcomes and Measures: The primary end point was serious adverse events for the safety run-in period and progression-free rate at 8 weeks (8wk-PFR)-assessed with a blinded independent central review in phase 2. The secondary end points were objective response rate, duration of response, progression-free survival (PFS), overall survival, and incidence of adverse events. Results: Of the 75 patients who were randomized, 73 (median [range] age, 69.5 [37-88] y; all female) were treated: V+A arm, 49 patients; A arm, 24 patients. In the V+A arm, the 8wk-PFR was 67.3% (unilateral 95% CI, 54.7%) and in the A arm, 39.1% (unilateral 95% CI, 22.2%). No significant serious adverse events were reported during the safety run-in period (n = 6 in V+A arm). The overall response rate was 24.5% (95% CI, 13.3%-38.9%) in the V+A arm vs 17.4% (95% CI, 5.0%-38.8%) in the A arm. With a median follow-up of 27.7 months, median PFS was 5.2 (95% CI, 3.4-8.9) in the V+A arm and 1.9 (95% CI, 1.6-8.9) months in the A arm. Fatigue, lymphopenia, hyperglycemia, and diarrhea were the most common (grade ≥2) adverse events associated with vistusertib. Conclusions and Relevance: This multicenter, open-label, phase 1/2 randomized clinical trial demonstrated that adding vistusertib to anastrozole improved 8wk-PFR, overall response rate, and PFS for patients with endometrial cancer and had manageable adverse events. Identification of molecular subgroups would allow for more precise selection of patients who may be most likely to experience favorable outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT02730923.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Idoso , Anastrozol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Humanos , Inibidores de MTOR , Morfolinas , Fosfatidilinositol 3-Quinases , Pirimidinas , Serina-Treonina Quinases TOR
16.
Nat Commun ; 13(1): 173, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013311

RESUMO

Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA de Neoplasias/genética , Tolerância a Medicamentos/genética , Fluoruracila/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Replicação do DNA , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Halogenação , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Carcinogenesis ; 32(3): 271-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21112961

RESUMO

The tumor suppressor gene TP53, encoding p53, is expressed as several transcripts. The fully spliced p53 (FSp53) transcript encodes the canonical p53 protein. The alternatively spliced p53I2 transcript retains intron 2 and encodes Δ40p53 (or ΔNp53), an isoform lacking first 39 N-terminal residues corresponding to the main transactivation domain. We demonstrate the formation of G-quadruplex structures (G4) in a GC-rich region of intron 3 that modulates the splicing of intron 2. First, we show the formation of G4 in synthetic RNAs encompassing intron 3 sequences by ultraviolet melting, thermal difference spectra and circular dichroism spectroscopy. These observations are confirmed by detection of G4-induced reverse transcriptase elongation stops in synthetic RNA of intron 3. In this region, p53 pre-messenger RNA (mRNA) contains a succession of short exons (exons 2 and 3) and introns (introns 2 and 4) covering a total of 333 bp. Site-directed mutagenesis of G-tracts putatively involved in G4 formation decreased by ~30% the excision of intron 2 in a green fluorescent protein-reporter splicing assay. Moreover, treatment of lymphoblastoid cells with 360A, a synthetic ligand that binds to single-strand G4 structures, increases the formation of FSp53 mRNA and decreases p53I2 mRNA expression. These results indicate that G4 structures in intron 3 regulate the splicing of intron 2, leading to differential expression of transcripts encoding distinct p53 isoforms.


Assuntos
Processamento Alternativo , Quadruplex G , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Sequência de Bases , Dicroísmo Circular , Éxons/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Íntrons/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Isoformas de Proteínas , DNA Polimerase Dirigida por RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
18.
Virol J ; 8: 285, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21651802

RESUMO

BACKGROUND: Influenza viruses can modulate and hijack several cellular signalling pathways to efficiently support their replication. We recently investigated and compared the cellular gene expression profiles of human lung A549 cells infected by five different subtypes of human and avian influenza viruses (Josset et al. Plos One 2010). Using these transcriptomic data, we have focused our analysis on the modulation of the p53 pathway in response to influenza infection. RESULTS: Our results were supported by both RT-qPCR and western blot analyses and reveal multiple alterations of the p53 pathway during infection. A down-regulation of mRNA expression was observed for the main regulators of p53 protein stability during infection by the complete set of viruses tested, and a significant decrease in p53 mRNA expression was also observed in H5N1 infected cells. In addition, several p53 target genes were also down-regulated by these influenza viruses and the expression of their product reduced. CONCLUSIONS: Our data reveal that influenza viruses cause an overall down-regulation of the host p53 pathway and highlight this pathway and p53 protein itself as important viral targets in the altering of apoptotic processes and in cell-cycle regulation.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/biossíntese , Western Blotting , Linhagem Celular , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cells ; 10(8)2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34440717

RESUMO

Recent findings suggest that ribosomes, the translational machineries, can display a distinct composition depending on physio-pathological contexts. Thanks to outstanding technological breakthroughs, many studies have reported that variations of rRNA modifications, and more particularly the most abundant rRNA chemical modification, the rRNA 2'O-ribose methylation (2'Ome), intrinsically occur in many organisms. In the last 5 years, accumulating reports have illustrated that rRNA 2'Ome varies in human cell lines but also in living organisms (yeast, plant, zebrafish, mouse, human) during development and diseases. These rRNA 2'Ome variations occur either within a single cell line, organ, or patient's sample (i.e., intra-variability) or between at least two biological conditions (i.e., inter-variability). Thus, the ribosomes can tolerate the absence of 2'Ome at some specific positions. These observations question whether variations in rRNA 2'Ome could provide ribosomes with particular translational regulatory activities and functional specializations. Here, we compile recent studies supporting the heterogeneity of ribosome composition at rRNA 2'Ome level and provide an overview of the natural diversity in rRNA 2'Ome that has been reported up to now throughout the kingdom of life. Moreover, we discuss the little evidence that suggests that variations of rRNA 2'Ome can effectively impact the ribosome activity and contribute to the etiology of some human diseases.


Assuntos
Evolução Molecular , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Leveduras/metabolismo , Animais , Linhagem Celular , Humanos , Metilação , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Ribossômico/genética , Ribossomos/genética , Leveduras/genética
20.
NAR Cancer ; 3(3): zcab032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34409299

RESUMO

5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA