Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38316053

RESUMO

Three-dimensional Dirac semimetals with square-net non-symmorphic symmetry, such as ternary ZrXY (X = Si, Ge; Y = S, Se, Te) compounds, have attracted significant attention owing to the presence of topological nodal lines, loops, or networks in their bulk. Orbital symmetry plays a profound role in such materials as the different branches of the nodal dispersion can be distinguished by their distinct orbital symmetry eigenvalues. The presence of different eigenvalues suggests that scattering between states of different orbital symmetry may be strongly suppressed. Indeed, in ZrSiS, there has been no clear experimental evidence of quasiparticle scattering reported between states of different symmetry eigenvalues at small wave vectorq⃗.Here we show, using quasiparticle interference, that atomic step-edges in the ZrSiS surface facilitate quasiparticle scattering between states of different symmetry eigenvalues. This symmetry eigenvalue mixing quasiparticle scattering is the first to be reported for ZrSiS and contrasts quasiparticle scattering with no mixing of symmetry eigenvalues, where the latter occurs with scatterers preserving the glide mirror symmetry of the crystal lattice, e.g. native point defects in ZrSiS. Finally, we show that the electronic structure of the ZrSiS surface, including its unique floating band surface state, can be tuned by a vertical electric field locally applied by the tip of a scanning tunneling microscope (STM), enabling control of a spin-orbit induced avoided crossing near the Fermi level by as much as 300%.

2.
Nano Lett ; 21(10): 4461-4468, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33970625

RESUMO

Moiré superlattices of van der Waals structures offer a powerful platform for engineering band structure and quantum states. For instance, Moiré superlattices in magic-angle twisted bilayer graphene, ABC trilayer graphene have been shown to harbor correlated insulating and superconducting states, while in transition metal dichalcogenide (TMD) twisted bilayers, Moiré excitons have been identified. Here we show that the effects of a Moiré superlattice on the band structure are general: In TMD twisted bilayers, excitons and exciton complexes can be trapped in the superlattice in a manner analogous to ultracold bosonic or Fermionic atoms in optical lattices. Using twisted MoSe2 homobilayers as a model system, we present evidence for Moiré trions. Our results thus open possibilities for designer van der Waals structures hosting arrays of Fermionic or bosonic quasiparticles, which can be used to realize tunable many-body states crucial for quantum simulation and quantum information processing.

3.
Nat Commun ; 13(1): 6046, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266271

RESUMO

In one-dimensional (1D) systems, electronic interactions lead to a breakdown of Fermi liquid theory and the formation of a Tomonaga-Luttinger Liquid (TLL). The strength of its many-body correlations can be quantified by a single dimensionless parameter, the Luttinger parameter K, characterising the competition between the electrons' kinetic and electrostatic energies. Recently, signatures of a TLL have been reported for the topological edge states of quantum spin Hall (QSH) insulators, strictly 1D electronic structures with linear (Dirac) dispersion and spin-momentum locking. Here we show that the many-body interactions in such helical Luttinger Liquid can be effectively controlled by the edge state's dielectric environment. This is reflected in a tunability of the Luttinger parameter K, distinct on different edges of the crystal, and extracted to high accuracy from the statistics of tunnelling spectra at tens of tunnelling points. The interplay of topology and many-body correlations in 1D helical systems has been suggested as a potential avenue towards realising non-Abelian parafermions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA