Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243137

RESUMO

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Assuntos
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratos , Animais , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo
2.
Mol Ther ; 30(7): 2474-2490, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390543

RESUMO

The development of new therapeutic avenues that target the early stages of Alzheimer's disease (AD) is urgently necessary. A disintegrin and metalloproteinase domain 10 (ADAM10) is a sheddase that is involved in dendritic spine shaping and limits the generation of amyloid-ß. ADAM10 endocytosis increases in the hippocampus of AD patients, resulting in the decreased postsynaptic localization of the enzyme. To restore this altered pathway, we developed a cell-permeable peptide (PEP3) with a strong safety profile that is able to interfere with ADAM10 endocytosis, upregulating the postsynaptic localization and activity of ADAM10. After extensive validation, experiments in a relevant animal model clarified the optimal timing of the treatment window. PEP3 administration was effective for the rescue of cognitive defects in APP/PS1 mice only if administered at an early disease stage. Increased ADAM10 activity promoted synaptic plasticity, as revealed by changes in the molecular compositions of synapses and the spine morphology. Even though further studies are required to evaluate efficacy and safety issues of long-term administration of PEP3, these results provide preclinical evidence to support the therapeutic potential of PEP3 in AD.


Assuntos
Doença de Alzheimer , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Endocitose , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Sinapses/metabolismo
3.
Cell Mol Life Sci ; 79(11): 558, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264429

RESUMO

The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.


Assuntos
Actinas , Espinhas Dendríticas , Actinas/metabolismo , Espinhas Dendríticas/fisiologia , Citoesqueleto de Actina/metabolismo , Sinapses/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Sinapsinas/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834804

RESUMO

Intranasal (IN) drug delivery is a non-invasive and effective route for the administration of drugs to the brain at pharmacologically relevant concentrations, bypassing the blood-brain barrier (BBB) and minimizing adverse side effects. IN drug delivery can be particularly promising for the treatment of neurodegenerative diseases. The drug delivery mechanism involves the initial drug penetration through the nasal epithelial barrier, followed by drug diffusion in the perivascular or perineural spaces along the olfactory or trigeminal nerves, and final extracellular diffusion throughout the brain. A part of the drug may be lost by drainage through the lymphatic system, while a part may even enter the systemic circulation and reach the brain by crossing the BBB. Alternatively, drugs can be directly transported to the brain by axons of the olfactory nerve. To improve the effectiveness of drug delivery to the brain by the IN route, various types of nanocarriers and hydrogels and their combinations have been proposed. This review paper analyzes the main biomaterials-based strategies to enhance IN drug delivery to the brain, outlining unsolved challenges and proposing ways to address them.


Assuntos
Barreira Hematoencefálica , Encéfalo , Preparações Farmacêuticas , Administração Intranasal , Sistemas de Liberação de Medicamentos , Mucosa Nasal
5.
Pharmacol Res ; 183: 106375, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918045

RESUMO

Toxic aggregates of α-synuclein (αsyn) are considered key drivers of Parkinson's disease (PD) pathology. In early PD, αsyn induces synaptic dysfunction also modulating the glutamatergic neurotransmission. However, a more detailed understanding of the molecular mechanisms underlying αsyn-triggered synaptic failure is required to design novel therapeutic interventions. Here, we described the role of Rabphilin-3A (Rph3A) as novel target to counteract αsyn-induced synaptic loss in PD. Rph3A is a synaptic protein interacting with αsyn and involved in stabilizing dendritic spines and in promoting the synaptic retention of NMDA-type glutamate receptors. We found that in vivo intrastriatal injection of αsyn-preformed fibrils in mice induces the early loss of striatal synapses associated with decreased synaptic levels of Rph3A and impaired Rph3A/NMDA receptors interaction. Modulating Rph3A striatal expression or interfering with the Rph3A/αsyn complex with a small molecule prevented dendritic spine loss and rescued associated early motor defects in αsyn-injected mice. Notably, the same experimental approaches prevented αsyn-induced synaptic loss in vitro in primary hippocampal neurons. Overall, these findings indicate that approaches aimed at restoring Rph3A synaptic functions can slow down the early synaptic detrimental effects of αsyn aggregates in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Proteínas do Tecido Nervoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Rabfilina-3A
6.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163460

RESUMO

Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson's and Alzheimer's disease. Interestingly, also in Parkinson's disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.


Assuntos
Proteína ADAM10/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Proteína 1 Homóloga a Discs-Large/genética , Proteínas de Membrana/genética , Doença de Parkinson/genética , Esquizofrenia/genética , Proteína ADAM10/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Autopsia , Estudos de Casos e Controles , Proteína 1 Homóloga a Discs-Large/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo
7.
Nat Methods ; 15(11): 969-976, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377377

RESUMO

Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.


Assuntos
Potenciais de Ação , Hiperalgesia/fisiopatologia , Neurônios/fisiologia , Optogenética , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Feminino , Luz , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia , Paclitaxel/toxicidade , Dor/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Peixe-Zebra
8.
Mov Disord ; 36(10): 2254-2263, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339069

RESUMO

BACKGROUND: In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. OBJECTIVES: We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. METHODS: Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. RESULTS: Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. CONCLUSIONS: Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Dopamina , Estimulação Magnética Transcraniana , Animais , Corpo Estriado , Plasticidade Neuronal , Ratos , Sinapses
9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670873

RESUMO

ADAM10 is the main α-secretase that participates in the non-amyloidogenic cleavage of amyloid precursor protein (APP) in neurons, inhibiting the production of ß-amyloid peptide (Aß) in Alzheimer's disease (AD). Strong recent evidence indicates the importance of the localization of ADAM10 for its activity as a protease. In this study, we investigated ADAM10 activity in plasma and CSF samples of patients with amnestic mild cognitive impairment (aMCI) and mild AD compared with cognitively healthy controls. Our results indicated that plasma levels of soluble ADAM10 were significantly increased in the mild AD group, and that in these samples the protease was inactive, as determined by activity assays. The same results were observed in CSF samples, indicating that the increased plasma ADAM10 levels reflect the levels found in the central nervous system. In SH-SY5Y neuroblastoma cells, ADAM10 achieves its major protease activity in the fraction obtained from plasma membrane lysis, where the mature form of the enzyme is detected, confirming the importance of ADAM10 localization for its activity. Taken together, our results demonstrate the potential of plasma ADAM10 to act as a biomarker for AD, highlighting its advantages as a less invasive, easier, faster, and lower-cost processing procedure, compared to existing biomarkers.


Assuntos
Proteína ADAM10/sangue , Doença de Alzheimer/sangue , Secretases da Proteína Precursora do Amiloide/sangue , Disfunção Cognitiva/sangue , Proteínas de Membrana/sangue , Proteína ADAM10/líquido cefalorraquidiano , Proteína ADAM10/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Linhagem Celular Tumoral , Disfunção Cognitiva/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Proteínas de Membrana/líquido cefalorraquidiano , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Plasma , Proteólise
10.
BMC Neurosci ; 21(1): 6, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019490

RESUMO

BACKGROUND: Synaptic degeneration and accumulation of amyloid ß-peptides (Aß) are hallmarks of the Alzheimer diseased brain. Aß is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the ß-secretase BACE1 and by γ-secretase. If APP is instead cleaved by the α-secretase ADAM10, Aß will not be generated. Although BACE1 is considered to be a presynaptic protein and ADAM10 has been reported to mainly localize to the postsynaptic density, we have previously shown that both ADAM10 and BACE1 are highly enriched in synaptic vesicles of rat brain and mouse primary hippocampal neurons. RESULTS: Here, using brightfield proximity ligation assay, we expanded our previous result in primary neurons and investigated the in situ synaptic localization of ADAM10 and BACE1 in rat and human adult brain using both pre- and postsynaptic markers. We found that ADAM10 and BACE1 were in close proximity with both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. The substrate APP was also detected both pre- and postsynaptically. Subcellular fractionation confirmed that ADAM10 and BACE1 are enriched to a similar degree in synaptic vesicles and as well as in the postsynaptic density. CONCLUSIONS: We show that the α-secretase ADAM10 and the ß-secretase BACE1 are located in both the pre- and postsynaptic compartments in intact brain sections. These findings increase our understanding of the regulation of APP processing, thereby facilitating development of more specific treatment strategies.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Ratos Wistar , Sinaptofisina/metabolismo
12.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019166

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by Aß-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine's morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.


Assuntos
Citoesqueleto de Actina/metabolismo , Doença de Alzheimer/patologia , Espinhas Dendríticas/patologia , Sinapses/patologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Humanos , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica
13.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322564

RESUMO

Nowadays, regenerative medicine faces a major challenge in providing new, functional materials that will meet the characteristics desired to replenish and grow new tissue. Therefore, this study presents new ceramic-polymer composites in which the matrix consists of tricalcium phosphates covered with blends containing a chemically bounded diclofenac with the biocompatible polymer-poly(3-hydroxyoctanoate), P(3HO). Modification of P(3HO) oligomers was confirmed by NMR, IR and XPS. Moreover, obtained oligomers and their blends were subjected to an in-depth characterisation using GPC, TGA, DSC and AFM. Furthermore, we demonstrate that the hydrophobicity and surface free energy values of blends decreased with the amount of diclofenac modified oligomers. Subsequently, the designed composites were used as a substrate for growth of the pre-osteoblast cell line (MC3T3-E1). An in vitro biocompatibility study showed that the composite with the lowest concentration of the proposed drug is within the range assumed to be non-toxic (viability above 70%). Cell proliferation was visualised using the SEM method, whereas the observation of cell penetration into the scaffold was carried out by confocal microscopy. Thus, it can be an ideal new functional bone tissue substitute, allowing not only the regeneration and restoration of the defect but also inhibiting the development of chronic inflammation.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Diclofenaco/química , Poli-Hidroxialcanoatos/química , Animais , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Cerâmica/farmacologia , Camundongos , Microscopia Eletroquímica de Varredura , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
15.
J Mater Sci Mater Med ; 29(12): 179, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30506294

RESUMO

This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20 g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore confirmed to be biocompatible in nature and suitable for neural regeneration.


Assuntos
Óleo de Coco , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Pseudomonas mendocina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Teste de Materiais , Camundongos , Ratos
16.
Mov Disord ; 32(7): 1035-1046, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28394013

RESUMO

BACKGROUND: Recent studies support the therapeutic utility of repetitive transcranial magnetic stimulation in Parkinson's disease (PD), whose progression is correlated with loss of corticostriatal long-term potentiation and long-term depression. Glial cell activation is also a feature of PD that is gaining increasing attention in the field because astrocytes play a role in chronic neuroinflammatory responses but are also able to manage dopamine (DA) levels. METHODS: Intermittent theta-burst stimulation protocol was applied to study the effect of therapeutic neuromodulation on striatal DA levels measured by means of in vivo microdialysis in 6-hydroxydopamine-hemilesioned rats. Effects on corticostriatal synaptic plasticity were studied through in vitro intracellular and whole-cell patch clamp recordings while stepping test and CatWalk were used to test motor behavior. Immunohistochemical analyses were performed to analyze morphological changes in neurons and glial cells. RESULTS: Acute theta-burst stimulation induced an increase in striatal DA levels in hemiparkinsonian rats, 80 minutes post-treatment, correlated with full recovery of plasticity and amelioration of motor performances. With the same timing, immediate early gene activation was restricted to striatal spiny neurons. Intense astrocytic and microglial responses were also significantly reduced 80 minutes following theta-burst stimulation. CONCLUSION: Taken together, these results provide a first glimpse on physiological adaptations that occur in the parkinsonian striatum following intermittent theta-burst stimulation and may help to disclose the real potential of this technique in treating PD and preventing DA replacement therapy-associated disturbances. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Astrócitos/fisiologia , Córtex Cerebral , Corpo Estriado , Dopamina/metabolismo , Microglia/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Transtornos Parkinsonianos/terapia , Estimulação Magnética Transcraniana/métodos , Adrenérgicos/farmacologia , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Genes Precoces/fisiologia , Masculino , Microdiálise , Oxidopamina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Ritmo Teta/fisiologia
17.
J Neurochem ; 134(5): 795-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206000

RESUMO

This Editorial highlights a study by Baglietto-Vargas et al. 2015 published in this issue of J. Neurochem. Stress is one of the environmental factors that can contribute to Alzheimer's disease pathogenesis. However, the role of modern-life stress has not been investigated yet. The authors reveal that modern-life stress reduces the number of dendritic spines in the hippocampus of Alzheimer's disease transgenic mice. The mechanism underlying such effect involves an increase in corticotropin-releasing hormone (CRH) release that stimulates the amyloid precursor protein (APP) processing and fosters the generation of Amyloid-ß, which negatively affects dendritic spines.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Ruído/efeitos adversos , Estresse Psicológico/complicações , Vibração/efeitos adversos , Animais , Humanos , Masculino
18.
Biomarkers ; 20(3): 196-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26220620

RESUMO

ADAM10 is a potential biomarker for Alzheimer's disease (AD). ADAM10 protein levels are reduced in platelets of AD patients. The aim was to verify the total blood and platelet ADAM10 gene expression in AD patients and to compare with mild cognitive impairment (MCI) and healthy subjects. No significant differences in ADAM10 gene expression were observed. Therefore, the decrease of ADAM10 protein in platelets of AD patients is not caused by a reduction in ADAM10 mRNA. Further studies must be performed to investigate other pathways in the down regulation of ADAM10 protein.


Assuntos
Proteínas ADAM/genética , Doença de Alzheimer/sangue , Secretases da Proteína Precursora do Amiloide/genética , Disfunção Cognitiva/sangue , Proteínas de Membrana/genética , RNA Mensageiro/genética , Proteínas ADAM/sangue , Proteína ADAM10 , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/sangue , Biomarcadores/sangue , Plaquetas/metabolismo , Plaquetas/patologia , Estudos de Casos e Controles , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/sangue , Pessoa de Meia-Idade , Testes Neuropsicológicos , RNA Mensageiro/sangue
19.
J Cell Sci ; 125(Pt 6): 1401-6, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328515

RESUMO

The neuropeptide pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) has been implicated in the induction of synaptic plasticity at the excitatory glutamatergic synapse. In particular, recent studies have shown that it is involved in the regulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation. Here we demonstrate the effect of PACAP38 on the modulation of dendritic spine morphology through a disintegrin and metalloproteinase 10 (ADAM10)-N-cadherin-AMPA receptor signaling pathway. Treatment of primary hippocampal neurons with PACAP38 induced an accumulation of ADAM10 at the postsynaptic membrane. This event led to a significant decrease of dendritic spine head width and to a concomitant reduction of GluR1 colocalization with postsynaptic markers. The PACAP38-induced effect on dendritic spine head width was prevented by either treatment with the ADAM10-specific inhibitor or transfection of a cleavage-defective N-cadherin construct mutated in the ADAM10 cleavage site. Overall, our findings reveal that PACAP38 is involved in the modulation of dendritic spine morphology in hippocampal neurons, and assign to the ADAM10-N-cadherin signaling pathway a crucial role in this modification of the excitatory glutamatergic synapse.


Assuntos
Proteínas ADAM/fisiologia , Caderinas/fisiologia , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Transdução de Sinais/fisiologia , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM10 , Animais , Caderinas/química , Caderinas/genética , Ácido Glutâmico/fisiologia , Hipocampo/citologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Cultura Primária de Células , Ratos
20.
Neurodegener Dis ; 13(2-3): 72-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24008925

RESUMO

BACKGROUND: Generation of amyloid-ß peptide is at the beginning of a cascade that leads to Alzheimer's disease. Amyloid precursor protein (APP) as well as ß- and γ-secretases are the principal players involved in amyloid-ß (Aß) production, while α-secretase cleavage on APP prevents Aß deposition. A disintegrin and metalloproteinase 10 (ADAM10) has been demonstrated to act as α-secretase in neurons. OBJECTIVE: Although localization of ADAM10 in the synaptic membrane is the key for its shedding activity, currently, very little is known about the mechanisms that control the synaptic abundance of ADAM10. RESULTS: Two established forms of long-term activity-dependent plasticity, i.e., long-term potentiation and long-term depression (LTD), differentially regulate the synaptic availability and activity of ADAM10. Long-term potentiation decreases ADAM10 surface levels and activity by promoting its endocytosis. This process is mediated by activity-regulated association of ADAM10 with the clathrin adaptor protein 2 (AP2) complex. Conversely, LTD fosters ADAM10 insertion in the membrane and stimulates its activity. Furthermore, ADAM10 interaction with synapse-associated protein 97 (SAP97) is necessary for LTD-induced ADAM10 trafficking and required for LTD maintenance and LTD-induced spine morphology changes. CONCLUSIONS: Regulated interaction of ADAM10 with SAP97 and AP2 discloses a novel physiological mechanism of ADAM10 activity regulation at the synapses. This phenomenon produces a situation whereby synaptically regulated ADAM10 activity is positioned to modulate synaptic functioning.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/patologia , Sinapses/fisiologia , Proteína ADAM10 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Proteína 1 Homóloga a Discs-Large , Humanos , Neurônios/patologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA