Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aging Cell ; 23(5): e14105, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38504487

RESUMO

Hutchinson-Gilford Progeria syndrome (HGPS) is a severe premature ageing disorder caused by a 50 amino acid truncated (Δ50AA) and permanently farnesylated lamin A (LA) mutant called progerin. On a cellular level, progerin expression leads to heterochromatin loss, impaired nucleocytoplasmic transport, telomeric DNA damage and a permanent growth arrest called cellular senescence. Although the genetic basis for HGPS has been elucidated 20 years ago, the question whether the Δ50AA or the permanent farnesylation causes cellular defects has not been addressed. Moreover, we currently lack mechanistic insight into how the only FDA-approved progeria drug Lonafarnib, a farnesyltransferase inhibitor (FTI), ameliorates HGPS phenotypes. By expressing a variety of LA mutants using a doxycycline-inducible system, and in conjunction with FTI, we demonstrate that the permanent farnesylation, and not the Δ50AA, is solely responsible for progerin-induced cellular defects, as well as its rapid accumulation and slow clearance. Importantly, FTI does not affect clearance of progerin post-farnesylation and we demonstrate that early, but not late FTI treatment prevents HGPS phenotypes. Collectively, our study unravels the precise contributions of progerin's permanent farnesylation to its turnover and HGPS cellular phenotypes, and how FTI treatment ameliorates these. These findings are applicable to other diseases associated with permanently farnesylated proteins, such as adult-onset autosomal dominant leukodystrophy.


Assuntos
Lamina Tipo A , Progéria , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Progéria/tratamento farmacológico , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/genética , Prenilação de Proteína , Dibenzocicloeptenos , Piperidinas , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA