Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 593(7860): 558-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953395

RESUMO

Odours are transported in turbulent plumes, which result in rapid concentration fluctuations1,2 that contain rich information about the olfactory scenery, such as the composition and location of an odour source2-4. However, it is unclear whether the mammalian olfactory system can use the underlying temporal structure to extract information about the environment. Here we show that ten-millisecond odour pulse patterns produce distinct responses in olfactory receptor neurons. In operant conditioning experiments, mice discriminated temporal correlations of rapidly fluctuating odours at frequencies of up to 40 Hz. In imaging and electrophysiological recordings, such correlation information could be readily extracted from the activity of mitral and tufted cells-the output neurons of the olfactory bulb. Furthermore, temporal correlation of odour concentrations5 reliably predicted whether odorants emerged from the same or different sources in naturalistic environments with complex airflow. Experiments in which mice were trained on such tasks and probed using synthetic correlated stimuli at different frequencies suggest that mice can use the temporal structure of odours to extract information about space. Thus, the mammalian olfactory system has access to unexpectedly fast temporal features in odour stimuli. This endows animals with the capacity to overcome key behavioural challenges such as odour source separation5, figure-ground segregation6 and odour localization7 by extracting information about space from temporal odour dynamics.


Assuntos
Bulbo Olfatório/citologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Movimentos do Ar , Animais , Comportamento Animal , Condicionamento Operante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Odorantes , Técnicas de Patch-Clamp , Comportamento Espacial , Fatores de Tempo
2.
Cell Tissue Res ; 383(1): 473-483, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33515294

RESUMO

The sense of smell is an essential modality for many species, in particular nocturnal and crepuscular mammals, to gather information about their environment. Olfactory cues provide information over a large range of distances, allowing behaviours ranging from simple detection and recognition of objects, to tracking trails and navigating using odour plumes from afar. In this review, we discuss the features of the natural olfactory environment and provide a brief overview of how odour information can be sampled and might be represented and processed by the mammalian olfactory system. Finally, we discuss recent behavioural approaches that address how mammals extract spatial information from the environment in three different contexts: odour trail tracking, odour plume tracking and, more general, olfactory-guided navigation. Recent technological developments have seen the spatiotemporal aspect of mammalian olfaction gain significant attention, and we discuss both the promising aspects of rapidly developing paradigms and stimulus control technologies as well as their limitations. We conclude that, while still in its beginnings, research on the odour environment offers an entry point into understanding the mechanisms how mammals extract information about space.


Assuntos
Odorantes , Animais , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA