Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
New Phytol ; 233(2): 809-822, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533849

RESUMO

Because of their importance as chemical mediators, the presence of a rich and varied family of lipoxygenase (LOX) products, collectively named oxylipins, has been investigated thoroughly in diatoms, and the involvement of these products in important processes such as bloom regulation has been postulated. Nevertheless, little information is available on the enzymes and pathways operating in these protists. Exploiting transcriptome data, we identified and characterized a LOX gene, PaLOX, in Pseudo-nitzschia arenysensis, a marine diatom known to produce different species of oxylipins by stereo- and regio-selective oxidation of eicosapentaenoic acid (EPA) at C12 and C15. PaLOX RNA interference correlated with a decrease of the lipid-peroxidizing activity and oxylipin synthesis, as well as with a reduction of growth of P. arenysensis. In addition, sequence analysis and structure models of the C-terminal part of the predicted protein closely fitted with the data for established LOXs from other organisms. The presence in the genome of a single LOX gene, whose downregulation impairs both 12- and 15-oxylipins synthesis, together with the in silico 3D protein modelling suggest that PaLOX encodes for a 12/15S-LOX with a dual specificity, and provides additional support to the correlation between cell growth and oxylipin biosynthesis in diatoms.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Transcriptoma
2.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502288

RESUMO

Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.


Assuntos
Glândula Tireoide/fisiologia , Tristetraprolina/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator de Transcrição PAX8/genética , Ratos , Receptor Notch1/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Tireotropina/farmacologia , Tristetraprolina/genética
3.
Amino Acids ; 52(4): 597-617, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185508

RESUMO

The free D-amino acid, D-aspartate, is abundant in the embryonic brain but significantly decreases after birth. Besides its intracellular occurrence, D-aspartate is also present at extracellular level and acts as an endogenous agonist for NMDA and mGlu5 receptors. These findings suggest that D-aspartate is a candidate signaling molecule involved in neural development, influencing brain morphology and behaviors at adulthood. To address this issue, we generated a knockin mouse model in which the enzyme regulating D-aspartate catabolism, D-aspartate oxidase (DDO), is expressed starting from the zygotic stage, to enable the removal of D-aspartate in prenatal and postnatal life. In line with our strategy, we found a severe depletion of cerebral D-aspartate levels (up to 95%), since the early stages of mouse prenatal life. Despite the loss of D-aspartate content, Ddo knockin mice are viable, fertile, and show normal gross brain morphology at adulthood. Interestingly, early D-aspartate depletion is associated with a selective increase in the number of parvalbumin-positive interneurons in the prefrontal cortex and also with improved memory performance in Ddo knockin mice. In conclusion, the present data indicate for the first time a biological significance of precocious D-aspartate in regulating mouse brain formation and function at adulthood.


Assuntos
Encéfalo/embriologia , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/deficiência , Animais , Encéfalo/metabolismo , Cognição , D-Aspartato Oxidase/genética , Técnicas de Introdução de Genes , Ácido Glutâmico/análise , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Serina/análise
5.
Adv Exp Med Biol ; 1169: 141-178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487023

RESUMO

Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.


Assuntos
Células-Tronco Adultas , Miocárdio , Animais , Diferenciação Celular , Miocárdio/citologia , Miócitos Cardíacos/citologia
6.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861348

RESUMO

Endoderm-derived organs as liver and pancreas are potential targets for regenerative therapies, and thus, there is great interest in understanding the pathways that regulate the induction and specification of this germ layer. Currently, the knowledge of molecular mechanisms that guide the in vivo endoderm specification is restricted by the lack of early endoderm specific markers. Nephrocan (Nepn) is a gene whose expression characterizes the early stages of murine endoderm specification (E7.5-11.5) and encodes a secreted N-glycosylated protein. In the present study, we report the identification of a new transcript variant that is generated through alternative splicing. The new variant was found to have differential and tissue specific expression in the adult mouse. In order to better understand Nepn role during endoderm specification, we generated Nepn knock-out (KO) mice. Nepn-/- mice were born at Mendelian ratios and displayed no evident phenotype compared to WT mice. In addition, we produced nullizygous mouse embryonic stem cell (mESC) line lacking Nepn by applying (CRISPR)/CRISPR-associated systems 9 (Cas9) and employed a differentiation protocol toward endoderm lineage. Our in vitro results revealed that Nepn loss affects the endoderm differentiation impairing the expression of posterior foregut-associated markers.


Assuntos
Padronização Corporal/genética , Endoderma/embriologia , Endoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Loci Gênicos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética
7.
Pharmacol Res ; 127: 116-128, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655642

RESUMO

The adult mammalian heart, including the human, is unable to regenerate segmental losses after myocardial infarction. This evidence has been widely and repeatedly used up-to-today to suggest that the myocardium, contrary to most adult tissues, lacks an endogenous stem cell population or more specifically a bona-fide cardiomyocyte-generating progenitor cell of biological significance. In the last 15 years, however, the field has slowly evolved from the dogma that no new cardiomyocytes were produced from shortly after birth to the present consensus that new cardiomyocytes are formed throughout lifespan. This endogenous regenerative potential increases after various forms of injury. Nevertheless, the degree/significance and more importantly the origin of adult new cardiomyocytes remains strongly disputed. Evidence from independent laboratories has shown that the adult myocardium harbours bona-fide tissue-specific cardiac stem cells (CSCs). Their transplantation and in situ activation have demonstrated the CSCs regenerative potential and have been used to develop regeneration protocols which in pre-clinical tests have shown to be effective in the prevention and treatment of heart failure. Recent reports purportedly tracking the c-kit+CSC's fate using Cre/lox recombination in the mouse have challenged the existence and regenerative potential of the CSCs and have raised scepticism about their role in myocardial homeostasis and regeneration. The validity of these reports, however, is controversial because they failed to show that the experimental approach used is capable to both identify and tract the fate of the CSCs. Despite these serious shortcomings, in contraposition to the CSCs, these publications have proposed the proliferation of existing adult fully-matured cardiomyocytes as the relevant mechanism to explain cardiomyocyte renewal in the adult. This review critically ponders the available evidence showing that the adult mammalian heart possesses a definable myocyte-generating progenitor cell of biological significance. This endogenous regenerative potential is expected to provide the bases for novel approaches of myocardial repair in the near future.


Assuntos
Integrases/genética , Miócitos Cardíacos/fisiologia , Recombinação Genética , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Humanos
8.
Sci Data ; 11(1): 522, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778120

RESUMO

Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.


Assuntos
Diatomáceas , Lipoxigenase , Transcriptoma , Diatomáceas/genética , Diatomáceas/enzimologia , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo
9.
Dev Biol ; 359(2): 163-75, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21924257

RESUMO

The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development.


Assuntos
Embrião de Mamíferos/metabolismo , Pulmão/metabolismo , Glândula Tireoide/metabolismo , Transcriptoma , Animais , Padronização Corporal/genética , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Embrião de Mamíferos/embriologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Microdissecção e Captura a Laser , Pulmão/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Organogênese/genética , Glândula Tireoide/embriologia , Fatores de Tempo
10.
Sci Adv ; 8(3): eabj9466, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044817

RESUMO

Diatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom Pseudo-nitzschia multistriata. We found that mating, under nutrient replete conditions, induces a prolonged growth arrest in parental cells. Transcriptomic analyses revealed down-regulation of genes related to major metabolic functions from the early phases of mating. Single-cell photophysiology also pinpointed an inhibition of photosynthesis and storage lipids accumulated in the arrested population, especially in gametes and zygotes. Numerical simulations revealed that growth arrest affects the balance between parental cells and their siblings, possibly favoring the new generation. Thus, in addition to resources availability, life cycle traits contribute to shaping the species ecological niches and must be considered to describe and understand the structure of plankton communities.


Assuntos
Diatomáceas , Ciclo Celular , Demografia , Diatomáceas/genética , Plâncton , Reprodução/fisiologia
11.
Front Cell Dev Biol ; 9: 709696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414189

RESUMO

The Activator Protein-1 transcription factor family (AP-1) transcriptional complex is historically defined as an early response group of transcription factors formed by dimeric complexes of the Jun, Fos, Atf, and Maf bZIP proteins that control cell proliferation and differentiation by regulating gene expression. It has been greatly investigated in many model organisms across metazoan evolution. Nevertheless, its complexity and variability of action made its multiple functions difficult to be defined. Here, we place the foundations for understanding the complexity of AP-1 transcriptional members in tunicates. We investigated the gene members of this family in the ascidian Ciona robusta and identified single copies of Jun, Fos, Atf3, Atf2/7, and Maf bZIP-related factors that could have a role in the formation of the AP-1 complex. We highlight that mesenchyme is a common cellular population where all these factors are expressed during embryonic development, and that, moreover, Fos shows a wider pattern of expression including also notochord and neural cells. By ectopic expression in transgenic embryos of Jun and Fos genes alone or in combination, we investigated the phenotypic alterations induced by these factors and highlighted a degree of functional conservation of the AP-1 complex between Ciona and vertebrates. The lack of gene redundancy and the first pieces of evidence of conserved functions in the control of cell movements and structural organization exerted by these factors open the way for using Ciona as a helpful model system to uncover the multiple potentialities of this highly complex family of bZIP transcription factors.

12.
Sci Rep ; 11(1): 1681, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462289

RESUMO

Due to their abundance in the oceans, their extraordinary biodiversity and the increasing use for biotech applications, the study of diatom biology is receiving more and more attention in the recent years. One of the limitations in developing molecular tools for diatoms lies in the peculiar nature of their cell wall, that is made of silica and organic molecules and that hinders the application of standard methods for cell lysis required, for example, to extract organelles. In this study we present a protocol for intact nuclei isolation from diatoms that was successfully applied to three different species: two pennates, Pseudo-nitzschia multistriata and Phaeodactylum tricornutum, and one centric diatom species, Chaetoceros diadema. Intact nuclei were extracted by treatment with acidified NH4F solution combined to low intensity sonication pulses and separated from cell debris via FAC-sorting upon incubation with SYBR Green. Microscopy observations confirmed the integrity of isolated nuclei and high sensitivity DNA electrophoresis showed that genomic DNA extracted from isolated nuclei has low degree of fragmentation. This protocol has proved to be a flexible and versatile method to obtain intact nuclei preparations from different diatom species and it has the potential to speed up applications such as epigenetic explorations as well as single cell ("single nuclei") genomics, transcriptomics and proteomics in different diatom species.


Assuntos
Fracionamento Celular/métodos , Núcleo Celular/química , Diatomáceas/citologia , Fracionamento Celular/normas , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/genética , DNA/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Microscopia Confocal , Frações Subcelulares/metabolismo
14.
Cell Cycle ; 17(8): 927-946, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862928

RESUMO

Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Multipotentes/citologia , Desenvolvimento Muscular , Miocárdio/citologia , Animais , Ciclo Celular , Humanos , Fenótipo
15.
Expert Opin Biol Ther ; 18(4): 409-423, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29347847

RESUMO

INTRODUCTION: The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED: Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION: The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Edição de Genes , Coração/fisiologia , Infarto do Miocárdio/terapia , Animais , Reprogramação Celular , Humanos , Infarto do Miocárdio/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Mol Cell Endocrinol ; 460: 24-35, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28652169

RESUMO

Here we describe a conditional doxycycline-dependent mouse model of RET/PTC3 (NCOA4-RET) oncogene-induced thyroid tumorigenesis. In these mice, after 10 days of doxycycline (dox) administration, RET/PTC3 expression induced mitogen activated protein kinase (MAPK) stimulation and a proliferative response which resulted in the formation of hyperplastic thyroid lesions. This was followed, after 2 months, by growth arrest accompanied by typical features of oncogene-induced senescence (OIS), including upregulation of p16INK4A and p21CIP, positivity at the Sudan black B, activation of the DNA damage response (DDR) markers γH2AX and pChk2 T68, and induction of p53 and p19ARF. After 5 months, about half of thyroid lesions escaped OIS and formed tumors that remained dependent on RET/PTC3 expression. This progression was accompanied by activation of AKT-FOXO1/3a pathway and increased serum TSH levels.


Assuntos
Senescência Celular , Oncogenes , Neoplasias da Glândula Tireoide/patologia , Animais , Apoptose , Bovinos , Dano ao DNA , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Fatores de Transcrição Forkhead/metabolismo , Hiperplasia , Masculino , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/patologia , Tireotropina/metabolismo , Tiroxina/metabolismo
17.
Diabetes ; 67(12): 2554-2568, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257973

RESUMO

Harnessing the mechanisms underlying the exacerbated vascular remodeling in diabetes mellitus (DM) is pivotal to prevent the high toll of vascular diseases in patients with DM. miRNA regulates vascular smooth muscle cell (VSMC) phenotypic switch. However, miRNA modulation of the detrimental diabetic VSMC phenotype is underexplored. Streptozotocin-induced type 1 DM (T1DM) Wistar rats and type 2 DM (T2DM) Zucker rats underwent right carotid artery experimental angioplasty, and global miRNA/mRNA expression profiling was obtained by RNA sequencing (RNA-Seq). Two days after injury, a set of six miRNAs were found to be uniquely downregulated or upregulated in VSMCs both in T1DM and T2DM. Among these miRNAs, miR-29c and miR-204 were the most significantly misregulated in atherosclerotic plaques from patients with DM. miR-29c overexpression and miR-204 inhibition per se attenuated VSMC phenotypic switch in DM. Concomitant miR-29c overexpression and miR-204 inhibition fostered an additive reduction in VSMC proliferation. Epithelial membrane protein 2 (Emp2) and Caveolin-1 (Cav1) mRNAs were identified as direct targets of miR-29c and miR-204, respectively. Importantly, contemporary miR-29c overexpression and miR-204 inhibition in the injured artery robustly reduced arterial stenosis in DM rats. Thus, contemporaneous miR-29c activation and miR-204 inhibition in DM arterial tissues is necessary and sufficient to prevent the exaggerated VSMC growth upon injury.


Assuntos
Proliferação de Células/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ratos , Ratos Wistar
18.
Cell Death Differ ; 24(12): 2101-2116, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28800128

RESUMO

Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents ⩽10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1-2% of total c-kitpos myocardial cells, when stimulated with TGF-ß/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.


Assuntos
Células-Tronco Adultas/enzimologia , Células-Tronco Multipotentes/enzimologia , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Células-Tronco Multipotentes/citologia , Miocárdio/citologia , Ratos , Ratos Wistar
19.
Cell Oncol (Dordr) ; 40(5): 483-496, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28721629

RESUMO

PURPOSE: Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS: EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS: We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS: Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.


Assuntos
Movimento Celular/genética , Mieloma Múltiplo/genética , Neovascularização Patológica/genética , Receptor EphA3/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Adesão Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Neovascularização Patológica/metabolismo , Interferência de RNA , Receptor EphA3/imunologia , Receptor EphA3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA