Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Immunology ; 171(3): 388-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964593

RESUMO

Macrophages play a critical role for the persistence of tattoo ink in human skin. However, a comparison to other skin-resident and blood circulating immune cells and a profound analysis of REACH-compliant tattoo ink are unmet medical needs. We hence characterized the size distribution of ink particles using physicochemical methods. We studied the uptake of tattoo ink by key human skin cells and blood-derived immune cells using optical and electron microscopy as well as flow cytometry. Scanning electron microscopy of ink revealed its crystalline structure, and a tendency towards aggregations was indicated by size changes upon diluting it. Flow cytometric analyses of skin and immune cells after incubation with tattoo ink demonstrated an increase in cellular granularity upon uptake and red ink additionally evoked fluorescent signals. Human macrophages were most potent in internalizing ink in full thickness 3D skin models. Macrophage cultures demonstrated that the ink did not lead to elevated inflammatory mediators, and showed no indications for toxicity, even after nice days. Strikingly, monocytes were most efficient in ink uptake, but displayed reduced viability, whereas granulocytes and lymphocytes showed only temporary ink uptake with flow cytometric signals declining after 1 day. Mechanistic studies on ink retention by corticosteroids or dexpanthenol in macrophage cultures demonstrated that these compounds do not lead to ink excretion, but even slightly increase the ink load in macrophages. The highly motile monocytes, precursors of macrophages, may play an underrated role for tattoo ink translocation from dermal blood vessels into internal organs.


Assuntos
Tatuagem , Humanos , Monócitos , Tinta , Pele , Macrófagos
2.
Lasers Surg Med ; 56(1): 100-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855626

RESUMO

PURPOSE: In postoperative wound healing after surgical operations or ablative laser treatments, recent studies suggest the timely use of non-ablative fractional laser treatments with the aim to improve wound healing and prevent pathological scar formation. However, the underlying molecular mechanisms are poorly understood. The aim of this study was to investigate the effects of laser-assisted scar healing (LASH) at the molecular level and to combine it with already established wound healing-promoting local treatments. METHODS: We irradiated full-thickness 3D skin models with a fractional ablative Er:YAG laser to set standardized lesions to the epidermal and upper dermal layer. Subsequently, LASH was induced by irradiating the models with either a fractional non-ablative 1540 nm Er:Glass or 1550 nm diode laser. In addition, we tested the combination of non-ablative fractional laser treatment and topical aftercare with a dexpanthenol-containing ointment (DCO). RESULTS: Histological analysis revealed that models irradiated with the 1540 nm Er:Glass or 1550 nm diode laser exhibited accelerated but not complete wound closure after 16 h. In contrast, additional topical posttreatment with DCO resulted in complete wound closure. At gene expression level, both non-ablative laser systems showed similar effects on epidermal differentiation and mild anti-inflammatory properties. The additional posttreatment with DCO enhanced the wound-healing effects of LASH, especially the upregulation of epidermal differentiation markers and anti-inflammatory cytokines at the gene expression level. CONCLUSION: This in vitro study deciphers the biological effects of LASH with a fractional non-ablative 1540 nm Er:Glass or a 1550 nm diode laser in 3D skin models. These data help to better understand the biological properties of the LASH technique and is important to optimize its application.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Humanos , Cicatriz/metabolismo , Lasers Semicondutores/uso terapêutico , Pele/metabolismo , Cicatrização , Lasers de Estado Sólido/uso terapêutico , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Terapia a Laser/métodos
3.
J Drugs Dermatol ; 23(4): 285-288, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564382

RESUMO

Injectable poly-L-lactic acid (PLLA-SCA) is used for the correction of shallow to deep nasolabial fold contour deficiencies, cheek wrinkles, and other facial wrinkles. In contrast to hyaluronan (HA) fillers, PLLA-SCA has a biostimulatory effect by activating resident fibroblasts to produce collagen, but the mechanisms are not known in detail at the molecular level. Therefore, our aim was to investigate the molecular effects of PLLA-SCA in a comprehensive in vitro study. Since PLLA-SCA-dependent collagen production in fibroblasts depends on the interaction with macrophages, we generated novel macrophage-containing 3D skin models. According to the clinical application, PLLA-SCA was injected once into the dermal equivalent of the 3D skin model. Histological analysis showed a significant increase in epidermal thickness in these models after 5 and 14 days. Gene expression profiling revealed an upregulation of integrins and laminins (e.g., LAMA3, ITGA6), which are essential components of the dermal-epidermal junction. In addition, we found an upregulation of cytokines and chemokines (TGFB2, CXCL6, IL1B) at day 14 after PLLA-SCA injection. Interestingly, immunohistochemical analyses exhibited a significantly stimulated collagen I production in our models. These effects might be attributed, at least in part, to the upregulation of IL1B and subsequently CXCL6, which stimulates collagen I synthesis in human dermal fibroblasts as we could demonstrate. Taken together, our data provide for the first time molecular insights into the biostimulatory effects of PLLA-SCA on collagen I production in novel human 3D skin models comprising macrophages. J Drugs Dermatol. 2024;23(4):7791.    doi:10.36849/JDD.7791.


Assuntos
Técnicas Cosméticas , Envelhecimento da Pele , Humanos , Polímeros , Poliésteres , Colágeno , Macrófagos , Expressão Gênica
4.
Cutan Ocul Toxicol ; 43(2): 124-128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284163

RESUMO

PURPOSE: To study the effects of the anti-IL-23A antibody risankizumab on the IL-36γ/IL-23A/IL-17A signalling cascade we used a newly developed 3D skin model consisting of primary human keratinocytes, fibroblasts and γδ-T-cells. METHODS: In this in vitro study we developed new full-thickness 3D skin models containing normal human epidermal keratinocytes (NHEK), normal human dermal fibroblasts (NHDF) and IL-23A responsive and IL-17A producing γδ-T-cells. The effects of IL-36γ stimulation with and without risankizumab treatment on IL-23A and IL-17A expression were examined at the RNA and protein levels. RESULTS: In preliminary monolayer experiments stimulation of γδ-T-cells with IL-23A promoted the IL-17A expression that was inhibited after risankizumab treatment. Using 3D skin models containing γδ-T-cells, we found that stimulation with IL-36γ significantly increased not only IL-23A but also IL-17A expression. These effects were inhibited by concomitant treatment with risankizumab. CONCLUSIONS: Our results showed that blockade of IL-23A has inhibitory effects on the IL-36γ/IL-23A feedforward loop. Our newly developed 3D skin model containing IL-23A responsive and IL-17A producing γδ-T-cells enables molecular analysis of targeted therapies aimed at the IL-36γ/IL-23A/IL-17A signalling cascade in psoriasis.


Assuntos
Anticorpos Monoclonais , Interleucina-17 , Subunidade p19 da Interleucina-23 , Queratinócitos , Pele , Humanos , Interleucina-17/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Anticorpos Monoclonais/farmacologia , Subunidade p19 da Interleucina-23/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/imunologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-1/metabolismo , Linfócitos Intraepiteliais/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Psoríase/tratamento farmacológico , Psoríase/imunologia
5.
Lasers Med Sci ; 37(2): 887-894, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33990899

RESUMO

Ablative fractional laser treatment leads to a loss of matrix metalloproteinase-3 (MMP-3) expression; therefore, in the present in vitro study, we addressed the role of MMP-3 and its regulation by calcium pantothenate in wound healing processes at the molecular level. Utilizing confocal laser microscopy, we investigated MMP-3 protein expression in fractional ablative CO2 laser-irradiated skin models. In addition, we established full-thickness 3D skin models using fibroblasts and keratinocytes with a MMP-3 knockdown that were irradiated with a fractional ablative Er:YAG laser to set superficial injuries with standardized dimensions and minimal thermal damage to the surrounding tissue. We revealed an upregulation of MMP-3 protein expression in laser-irradiated skin models receiving aftercare treatment with calcium pantothenate. Skin models with MMP-3 knockdown exhibited a slower wound closure after laser treatment compared to controls. Gene expression profiling detected an MMP-3 knockdown-dependent upregulation of cytokines and chemokines (e.g. IL-36B, CXCL17, IL-37, CXCL5), antimicrobial peptides (e.g., S100A7, S100A12), epidermal crosslinking enzymes (TGM5), and differentiation markers (e.g., LOR, KRT1, FLG2). We also detected a downregulation of cathepsin V and MMP-10, both of which play a prominent role in wound healing processes. After fractional ablative laser injury, an aftercare treatment with calcium pantothenate accelerated wound closure in MMP-3 expressing models faster than in MMP-3 knockdown models. Our data substantiate a major role of MMP-3 in wound healing processes after ablative laser treatments. For the first time, we could show that calcium pantothenate exerts its wound healing-promoting effects at least partly via MMP-3.


Assuntos
Lasers de Gás , Ácido Pantotênico , Lasers de Gás/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Ácido Pantotênico/metabolismo , Pele/metabolismo , Cicatrização
6.
Exp Dermatol ; 30(5): 745-750, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403711

RESUMO

This study aimed to investigate the molecular effects of radiation and subsequent aftercare treatment with dexpanthenol-containing ointment and liquid on established full-thickness 3D skin models depicting acute radiodermatitis and mucositis. To mimic radiomucositis and radiodermatitis, non-keratinized mucous membrane and normal human skin models were irradiated with 5 Gray. Afterwards, models were treated topically every second day with dexpanthenol-containing ointment or liquid in comparison with placebo and untreated controls. On day 7 after irradiation, histological examination showed impairments in irradiated models. In contrast, models treated with dexpanthenol-containing ointment or liquid showed a completely restored epidermal part. While gene expression profiling revealed an induction of genes related to a pro-inflammatory milieu, oxidative stress and an impaired epidermal differentiation after irradiation of the models, aftercare treatment with dexpanthenol-containing ointment or liquid revealed anti-oxidative and anti-inflammatory effects and had a positive effect on epidermal differentiation and structures important for physical and antimicrobial barrier function. Our findings confirm the potential of our established models as in vitro tools for the replacement of pharmacological in vivo studies regarding radiation-induced skin injuries and give indications of the positive effects of dexpanthenol-containing externals after radiation treatments as part of supportive tumor treatment.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Queratinócitos/efeitos dos fármacos , Mucosa Bucal/efeitos da radiação , Pomadas/uso terapêutico , Ácido Pantotênico/análogos & derivados , Administração Tópica , Assistência ao Convalescente , Epiderme/efeitos dos fármacos , Humanos , Ácido Pantotênico/uso terapêutico , Cicatrização/efeitos dos fármacos
7.
J Drugs Dermatol ; 19(9): 897-899, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026754

RESUMO

Injection of dermal fillers is one of the most frequently performed aesthetic procedures. The aim of the present study was to investigate the biological effects of different stabilized hyaluronan (HA) and poly-l-lactic acid fillers with and without subsequent additional fractional laser co-treatment on skin morphology and gene expression. Intradermal injection resulted in a significant enhancement of epidermal thickness detected by histological analysis. Combining HA fillers with ablative fractional CO2- or Er:YAG laser irradiation enhanced this effect. Gene expression profiling revealed an upregulation of modulators of tissue remodeling (eg TIMP3, SERPIN E1) and collagens (COL11A1). On the other hand, we detected a downregulation of differentiation markers (eg FLG, LOR, KRT1) and proinflammatory cytokines (eg IL-36, IL-1β). Interestingly, HA-based fillers revealed a specific upregulation pattern of chemokines such as CXCL5 andCCL20 suggesting a secondary effect of these fillers on the immune cells of the skin, especially monocytes and macrophages. Taken together, our data show enhancing effects of dermal fillers on epidermal thickness and prove the proliferating effects of these products on epidermal cells on the molecular level. Moreover, our findings reveal synergistic effects of fractional ablative laser treatment and HA dermal filler injection suggesting a combination of both treatments. J Drugs Dermatol. 2020;19(9):897-899. doi:10.36849/JDD.2020.4856.


Assuntos
Técnicas Cosméticas , Preenchedores Dérmicos/administração & dosagem , Terapia a Laser/métodos , Envelhecimento da Pele/efeitos dos fármacos , Citocinas/análise , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Regulação para Baixo/efeitos da radiação , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/efeitos da radiação , Proteínas Filagrinas , Perfilação da Expressão Gênica , Humanos , Ácido Hialurônico/administração & dosagem , Injeções Intradérmicas , Terapia a Laser/instrumentação , Lasers de Gás , Lasers de Estado Sólido , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/efeitos da radiação , Poliésteres/administração & dosagem , Envelhecimento da Pele/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Regulação para Cima/efeitos da radiação
8.
Skin Pharmacol Physiol ; 33(4): 198-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32799206

RESUMO

INTRODUCTION: Hyaluronan (HA) is a major component of the skin that exerts a variety of biological functions. Inter-α-trypsin inhibitor heavy chain (ITIH) proteins comprise a family of hyaladherins of which ITIH5 has recently been described in skin, where it plays a functional role in skin morphology and inflammatory skin diseases including allergic contact dermatitis (ACD). OBJECTIVE: The current study focused on the ITIH5-HA interaction and its potential clinical and functional impact in extracellular matrix (ECM) stabilization. METHODS: Studying the molecular effects of ITIH5 in skin, we established skin models comprising murine skin cells of Itih5 knockout mice and corresponding wild-type controls. In addition, human dermal fibroblasts with an ITIH5 knockdown as well as a murine recombinant Itih5 protein were established to examine the interaction between ITIH5 and HA using in vitro adhesion and HA degradation assays. To understand more precisely the role of ITIH5 in inflammatory skin diseases such as ACD, we generated ITIH5 knockout cells of the KeratinoSens® cell line. RESULTS: Using murine skin models, ITIH5 knockdown fibroblasts, and a reactive oxygen species (ROS)-mediated HA degradation assay, we proved that ITIH5 binds to HA, thereby acting as a stabilizer of HA. Moreover, microarray profiling revealed the impact of ITIH5 on biological processes such as skin development and ECM homeostasis. Performing the in vitro KeratinoSens skin sensitization assay, we detected that ITIH5 decreases the sensitizing potential of moderate and strong contact sensitizers. CONCLUSION: Taken together, our experiments revealed that ITIH5 forms complexes with HA, thereby on the one hand stabilizing HA and facilitating the formation of ECM structures and on the other hand modulating inflammatory responses.


Assuntos
Dermatite Alérgica de Contato/metabolismo , Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Pele/metabolismo , Animais , Adesão Celular , Células Cultivadas , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/patologia , Eugenol/farmacologia , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ligação Proteica , Proteínas Secretadas Inibidoras de Proteinases/deficiência , Proteínas Secretadas Inibidoras de Proteinases/genética , Pele/patologia , Tiazóis/farmacologia
9.
Skin Pharmacol Physiol ; 32(6): 337-343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509851

RESUMO

BACKGROUND: In addition to its role as a broad-spectrum imidazole antifungal drug, data from animal models as well as human clinical trials also demonstrated an anti-inflammatory efficacy of bifonazole (BFZ). In the histamine wheal test and after UV radiation, BFZ showed antiphlogistic effects that were comparable to those of hydrocortisone. However, the underlying molecular mechanisms of the anti-inflam-matory properties of BFZ are poorly understood. METHODS: Performing an in vitro study we used full-thickness three-dimensional (3D) skin models containing macrophages as mediators of inflammation. We conducted two sets of experiments. In a first set we exposed our models to UVB irradiation to provoke an inflammation. A second approach used the addition of histamine into the culture medium. In both approaches, models were treated topically with a BFZ-containing ointment or a placebo ointment for 24 h, and then the effects were examined histologically as well as with microarray and quantitative real-time PCR analyses. RESULTS: Histological examination showed that the BFZ-containing ointment reconstituted UVB- and histamine-mediated disorders within the skin models. Performing gene expression profiling in models that were treated with the BFZ-containing ointment after UVB irradiation, we detected an upregu-lation of differentiation markers (fillagrin, loricrin, and keratin 1), antimicrobial peptides (DEFB103A), and members of the cytochrome P450 family (CYP1A1 and CYP1B1) as well as a downregulation of genes that are involved in immune response (CCL22, CXCL12, CCL7, IRF1, ICAM1, TLR3, and RARRES3) and matrix metalloproteinases (MMP12 and MMP7). Models that were treated with the BFZ-containing ointment after histamine application showed an upregulation of members of the cytochrome P450 family (CAP1A1, CYP1B1, and CYP24A1) and a downregulation of immune response-associated genes (CXCL6, CXCL12, CCL8, IL6, and IL32). CONCLUSION: We present the first in vitro study showing anti-inflammatory effects of BFZ in human 3D skin models. To our knowledge, this is the first time that these effects could be translated from human clinical trials into an in vitro test system, allowing a more detailed examination of molecular mechanisms that were regulated by BFZ.


Assuntos
Anti-Inflamatórios/farmacologia , Histamina/farmacologia , Imidazóis/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Adulto , Técnicas de Cocultura , Sistema Enzimático do Citocromo P-450/genética , Citocinas/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Proteínas de Filamentos Intermediários/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores do Ácido Retinoico/genética , Pele/metabolismo
10.
Skin Pharmacol Physiol ; 32(5): 265-274, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31284289

RESUMO

INTRODUCTION: Efforts are increasingly aiming to develop in vitro models that can provide effective alternatives to in vivo experiments. The main aim of this study was the establishment of an in vitro model of the nonkeratinized mucous membrane that can be used as a standardized tool to evaluate biological and therapeutic effects of pharmaceuticals for mucosal wound healing. METHODS: We established a full-thickness in vitro model of the nonkeratinized mucous membrane. While histological examination was performed to assess morphological characteristics, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of treatment with a dexpanthenol-containing ointment after laser wounding. RESULTS: Performing histological and immunofluorescence analyses we proved that our model mimics the two distinctive layers of the mucous membrane - the stratified squamous epithelium and the lamina propria. We used this model to investigate molecular effects of a dexpanthenol-containing ointment that is commonly used for the wound treatment of mucous membranes. For that purpose, our model exhibits a unique feature in that dexpanthenol and proliferation-enhancing additives that may interfere with our studies are not required for the maintenance of the model culture. After setting standardized lesions with a nonsequential fractional ultrapulsed CO2 laser, topical treatment with the dexpanthenol-containing ointment enhanced wound closure in the model compared to placebo and untreated controls. Furthermore, microarray analysis revealed that the treatment of the laser-wounded model with the dexpanthenol-containing ointment evoked an upregulated expression of various genes related to accelerated wound healing. CONCLUSION: Overall, we verified that this novel mucous membrane model can be utilized in future to monitor ex vivo effects of various topical therapies on mucosa morphology, physiology, and gene expression. Our findings confirm the potential of the model as an in vitro tool for the replacement of pharmacological in vivo studies regarding mucosal wound healing.


Assuntos
Alternativas aos Testes com Animais , Modelos Biológicos , Mucosa Bucal/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Administração Tópica , Idoso , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Humanos , Lasers/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/metabolismo , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/farmacologia
11.
Exp Dermatol ; 27(9): 1009-1014, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29851147

RESUMO

Atopic dermatitis (AD) is a chronically relapsing, pruritic inflammation of the skin with dryness and disturbed skin barrier function. Recently, we established that IL-31 treatment of human 3D skin models resulted in a disrupted skin barrier phenotype resembling AD. In this model, we found that IL-31 interferes with the differentiation of keratinocytes and inhibits the expression of terminal differentiation markers. In the present study, we investigated the effects of a ceramide-containing water-in-oil skin care ointment on the physical skin barrier structure and function in disrupted skin barrier models, generated either by using primary normal human epidermal keratinocytes (NHEK) or HaCaT cells. We observed that the physical skin barrier of the models recovered after daily topical treatment with the ceramide-containing ointment. Topical application of the ointment prevented downregulation of filaggrin and disorganization of other differentiation markers, such as keratin 10 and ß4-integrin, as demonstrated by immunohistological analysis. The expression of Ki67 was also upregulated in response to the ointment. Furthermore, functional studies revealed that local application of the ointment diminished the increased uptake of fluorescently labelled recombinant allergens of timothy grass (phl p1) in our model. In conclusion, our data revealed that topical application of a ceramide-containing skin care ointment reduced IL-31 induced impairments of the physical skin barrier and skin barrier function in an in vitro model of the disrupted skin barrier. This standardized model can be utilized in the future to monitor ex vivo effects of various topical therapies on skin morphology, physiology, and gene expression.


Assuntos
Ceramidas/farmacologia , Fármacos Dermatológicos/farmacologia , Interleucinas/farmacologia , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Perda Insensível de Água/efeitos dos fármacos , Órgãos Bioartificiais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fibroblastos/metabolismo , Proteínas Filagrinas , Humanos , Queratinócitos/metabolismo , Bases para Pomadas , Pomadas , Proteínas Recombinantes/farmacologia , Água/metabolismo
12.
FASEB J ; 31(2): 526-543, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825106

RESUMO

The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif-/- and K14-Cre+/tg; Miffl/fl) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Pele/citologia , Pele/imunologia , Animais , Antracenos/toxicidade , Antígenos CD/genética , Antígenos CD/metabolismo , Carcinogênese , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Piperidinas/toxicidade , Piridinas/toxicidade , Receptores CXCR/genética , Receptores CXCR/metabolismo
13.
J Immunol ; 196(8): 3233-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944931

RESUMO

Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalence, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in three-dimensional organotypic skin models. IL-31-regulated genes are involved in the formation of an intact physical skin barrier. Many of these genes were poorly induced during differentiation as a consequence of IL-31 treatment, resulting in increased penetrability to allergens and irritants. Furthermore, studies employing cell-sorted skin equivalents in SCID/NOD mice demonstrated enhanced transepidermal water loss following s.c. administration of IL-31. We identified the IL-1 cytokine network as a downstream effector of IL-31 signaling. Anakinra, an IL-1R antagonist, blocked the IL-31 effects on skin differentiation. In addition to the effects on the physical barrier, IL-31 stimulated the expression of antimicrobial peptides, thereby inhibiting bacterial growth on the three-dimensional organotypic skin models. This was evident already at low doses of IL-31, insufficient to interfere with the physical barrier. Together, these findings demonstrate that IL-31 affects keratinocyte differentiation in multiple ways and that the IL-1 cytokine network is a major downstream effector of IL-31 signaling in deregulating the physical skin barrier. Moreover, by interfering with IL-31, a currently evaluated drug target, we will have to consider that low doses of IL-31 promote the antimicrobial barrier, and thus a complete inhibition of IL-31 signaling may be undesirable.


Assuntos
Dermatite Atópica/patologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucinas/metabolismo , Junções Íntimas/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas Filagrinas , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucinas/farmacologia , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Interleucina-1/antagonistas & inibidores , Transdução de Sinais/fisiologia , Pele/citologia , Pele/crescimento & desenvolvimento , Junções Íntimas/efeitos dos fármacos
14.
Lasers Med Sci ; 31(3): 397-404, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796701

RESUMO

Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.


Assuntos
Cicatriz/radioterapia , Lasers de Estado Sólido/uso terapêutico , Pele/efeitos da radiação , Cicatriz/patologia , Proteínas Filagrinas , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Modelos Biológicos , Pele/patologia , Técnicas de Cultura de Tecidos
16.
Exp Dermatol ; 24(9): 663-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25809190

RESUMO

Inter-α-trypsin inhibitors are protease inhibitors that are thought to be important regulators in various acute-phase processes. They are composed of one light chain (bikunin) and different heavy chains (ITIHs). The only function known so far of ITIHs is the covalent linkage to hyaluronan (HA). As there is virtually no knowledge on the distribution and function of ITIH proteins in skin tissue, we performed a systematic characterization of ITIH expression in healthy and diseased skin. Using GeneChip(®) Human Exon 1.0 ST expression profiling, we found that ITIH5 represents the major ITIH family member expressed in human skin. Moreover, the use of quantitative reverse transcription PCR and a customized ITIH5-specific antibody indicated that ITIH5 is predominantly produced by dermal fibroblasts. Immunohistochemical analysis revealed a clearly detectable ITIH5 protein expression in normal skin. Interestingly, ITIH5 expression was significantly up-regulated in inflammatory skin diseases. Furthermore, 3D skin models employing murine Itih5(-/-) epidermal keratinocytes and dermal fibroblasts as well as skin specimens of Itih5(-/-) mice revealed a significantly altered epidermal structure compared to wild-type controls. Hence, we can strengthen the presumption that ITIH5 may constitute a novel regulatory molecule of the human skin that could play an important role in inflammation via its interaction with HA.


Assuntos
Epiderme/metabolismo , Expressão Gênica , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Dermatopatias/genética , Dermatopatias/metabolismo , alfa-Globulinas/genética , Animais , Proteínas Sanguíneas/genética , Células Cultivadas , Epiderme/química , Epiderme/patologia , Feminino , Fibroblastos , Perfilação da Expressão Gênica , Glicoproteínas/genética , Humanos , Ácido Hialurônico/metabolismo , Inflamação/genética , Queratinócitos , Camundongos , Camundongos Knockout , Modelos Anatômicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Secretadas Inibidoras de Proteinases/análise , RNA Mensageiro/metabolismo , Regulação para Cima
17.
Lasers Surg Med ; 47(3): 257-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25771913

RESUMO

BACKGROUND AND OBJECTIVE: At present, there is no standardized in vitro human skin model for wound healing. Therefore, our aim was to establish and characterize an in vitro/ex vivo three-dimensional (3D) wound healing model, which we employed to analyze the effects of dexpanthenol on wound healing and gene regulation. MATERIALS AND METHODS: The novel human 3D skin wound healing model using scaffold and collagen 3D organotypic skin equivalents was irradiated with a non-sequential fractional ultrapulsed CO2 laser. These standardized injured full-thickness skin equivalents enable qRT-PCR, microarray, and histological studies analyzing the effect of topically or systemically applied compounds on skin wound healing. RESULTS: These human laser-irradiated skin models were found to be appropriate for in vitro wound healing analysis. Topical treatment of skin wounds with a 5% dexpanthenol water-in-oil emulsion or two different 5% dexpanthenol oil-in-water emulsions clearly enhanced wound closure compared to laser-irradiated untreated control models. To find out whether this positive effect is caused by the active substance dexpanthenol, laser-irradiated skin models were cultured in calciumpantothenate containing medium (20 µg/ml) compared to skin equivalents cultured without calciumpantothenate. 3D models cultured in calciumpantothenate revealed considerably faster wound closure compared to the control models. Quantitative RT-PCR studies showed enhanced mRNA expression of MMP3, IL1α, keratin-associated protein 4-12 (KRTAP4-12), and decreased expression of S100A7 in laser-irradiated skin models cultured in medium containing calciumpantothenate. CONCLUSION: This novel standardized human 3D skin wound healing model proves useful for topical pharmacological studies on wound healing and reveals new insights into molecular mechanisms of dexpanthenol-mediated effects on wound healing. In addition, these novel 3D model systems can be used to monitor ex vivo effects of various laser systems on gene expression and morphology of human skin.


Assuntos
Lasers de Gás/uso terapêutico , Modelos Biológicos , Ácido Pantotênico/análogos & derivados , Cicatrização/efeitos dos fármacos , Células Cultivadas , Procedimentos Cirúrgicos Dermatológicos/métodos , Humanos , Ácido Pantotênico/farmacologia , Cicatrização/genética
18.
Exp Dermatol ; 23(11): 832-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25236354

RESUMO

Retinoids such as all-trans retinoic acid (ATRA) influence cell growth, differentiation and apoptosis and may play decisive roles in tumor development and progression. An essential retinoid-metabolizing enzyme known as lecithin retinol acyltransferase (LRAT) is expressed in melanoma cells but not in melanocytes catalysing the esterification of all-trans retinol (ATRol). In this study, we show that a stable LRAT knockdown (KD) in the human melanoma cell line SkMel23 leads to significantly increased levels of the substrate ATRol and biologically active ATRA. LRAT KD restored cellular sensitivity to retinoids analysed in cell culture assays and melanoma 3D skin models. Furthermore, ATRA-induced gene regulatory mechanisms drive depletion of added ATRol in LRAT KD cells. PCR analysis revealed a significant upregulation of retinoid-regulated genes such as CYP26A1 and STRA6 in LRAT KD cells, suggesting their possible involvement in mediating retinoid resistance in melanoma cells. In conclusion, LRAT seems to be important for melanoma progression. We propose that reduction in ATRol levels in melanoma cells by LRAT leads to a disturbance in cellular retinoid level. Balanced LRAT expression and activity may provide protection against melanoma development and progression. Pharmacological inhibition of LRAT activity could be a promising strategy for overcoming retinoid insensitivity in human melanoma cells.


Assuntos
Aciltransferases/genética , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Tretinoína/química , Catálise , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/citologia , Melanócitos/metabolismo , Vitamina A/química , Melanoma Maligno Cutâneo
19.
J Allergy Clin Immunol ; 129(2): 426-33, 433.e1-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22177328

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory skin disease affecting 10% to 20% of children and 1% to 3% of adults in industrialized countries. Enhanced expression of IL-31 is detected in skin samples of patients with AD, but its physiological relevance is not known. OBJECTIVE: We sought to determine the role of IL-31 in skin differentiation. METHODS: We used human 3-dimensional organotypic skin models with either primary keratinocytes or HaCaT keratinocytes with inducible IL-31 receptor α to evaluate the effect of IL-31. The consequences were studied by using histology, the expression of markers analyzed by immunofluoresence and quantitative RT-PCR, and gene expression arrays. RESULTS: We observed that IL-31 interferes with keratinocyte differentiation. Gene expression analysis revealed a limited set of genes deregulated in response to IL-31, including IL20 and IL24. In HaCaT keratinocytes with inducible IL-31 receptor α, IL-31 inhibited proliferation upon induction of IL-31 receptor α by inducing cell cycle arrest. As in primary cells, IL-31-treated HaCaT cells elicited a differentiation defect in organotypic skin models, associated with reduced epidermal thickness, disturbed epidermal constitution, altered alignment of the stratum basale, and poor development of the stratum granulosum. The differentiation defect was associated with a profound repression of terminal differentiation markers, including filaggrin, an essential factor for skin barrier formation, and a reduced lipid envelope. The highly induced proinflammatory cytokines IL-20 and IL-24 were responsible for part of the effect on FLG expression and thus for terminal differentiation. CONCLUSION: Our study suggests that IL-31 is an important regulator of keratinocyte differentiation and demonstrates a link between the presence of IL-31 in skin, as found in patients with AD, and filaggrin expression.


Assuntos
Dermatite Atópica/metabolismo , Interleucinas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Proteínas Filagrinas , Humanos , Interleucinas/genética , Queratinócitos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pele/metabolismo
20.
Clin Cosmet Investig Dermatol ; 16: 1533-1538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337567

RESUMO

Purpose: In vitro study on the molecular effects of post-treatment after micro-needling applications with a dexpanthenol-containing ointment (DCO) using 3D skin models. Patients and Methods: In this in vitro study, full-thickness human 3D skin models were treated with a micro-needling device according to its clinical application. For post-treatment, some of the models were additionally treated with a dexpanthenol-containing ointment (DCO). Histological samples were taken at 0, 24 and 48 hours. Gene expression analysis was performed after 24 hours. Results: Histological examination showed that DCO post-treated 3D skin models revealed a completed wound closure 24 hours after the micro-needling procedure. In contrast, DCO-untreated models still clearly exhibited the micro-needling lesions after the same period of time. After 48 hours, all models revealed a completed wound healing. In skin models that received micro-needling but no post-treatment with DCO, microarray analysis identified an upregulation of proinflammatory cytokines and chemokines and a downregulation of skin barrier and differentiation markers. In contrast, post-treatment with DCO leads to accelerated wound healing without affecting the initial inflammatory response caused by micro-needling, which leads to the subsequent collagen expression. This data was supported by qRT-PCR analyses. Conclusion: Post-treatment with DCO accelerates epidermal wound healing after micro-needling of 3D skin models without impairing the immunostimulatory properties of micro-needling. These findings can help to optimise the aftercare routine after micro-needling procedures and to shorten the downtime for the patient after treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA