RESUMO
CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Animais , Camundongos , Linfonodos , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia/métodos , Microambiente TumoralRESUMO
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vß chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vß and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vß chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Citometria de Fluxo , Listeria monocytogenes , Listeriose , Animais , Diferenciação Celular/imunologia , Camundongos , Listeria monocytogenes/imunologia , Linfócitos T CD8-Positivos/imunologia , Listeriose/imunologia , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Ativação Linfocitária/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunidade Adaptativa , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Assuntos
Infestações por Ácaros , Ácaros , Animais , Citocinas , Folículo Piloso/patologia , Humanos , Imunidade Inata , Inflamação , Interleucina-13 , Linfócitos/patologia , Camundongos , Infestações por Ácaros/complicações , Infestações por Ácaros/parasitologia , Infestações por Ácaros/patologia , SimbioseRESUMO
While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.
Assuntos
COVID-19 , Pneumonia , Progressão da Doença , Humanos , SARS-CoV-2RESUMO
Memory T cells are thought to rely on oxidative phosphorylation and short-lived effector T cells on glycolysis. Here, we investigated how T cells arrive at these states during an immune response. To understand the metabolic state of rare, early-activated T cells, we adapted mass cytometry to quantify metabolic regulators at single-cell resolution in parallel with cell signaling, proliferation, and effector function. We interrogated CD8+ T cell activation in vitro and in response to Listeria monocytogenes infection in vivo. This approach revealed a distinct metabolic state in early-activated T cells characterized by maximal expression of glycolytic and oxidative metabolic proteins. Cells in this transient state were most abundant 5 days post-infection before rapidly decreasing metabolic protein expression. Analogous findings were observed in chimeric antigen receptor (CAR) T cells interrogated longitudinally in advanced lymphoma patients. Our study demonstrates the utility of single-cell metabolic analysis by mass cytometry to identify metabolic adaptations of immune cell populations in vivo and provides a resource for investigations of metabolic regulation of immune responses across a variety of applications.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Animais , Proliferação de Células/fisiologia , Feminino , Glicólise/imunologia , Memória Imunológica/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única/métodosRESUMO
Although interactions between inhibitory Ly49 receptors and their self-MHC class I ligands in C57BL/6 mice are known to limit NK cell proliferation during mouse CMV (MCMV) infection, we created a 36-marker mass cytometry (CyTOF) panel to investigate how these inhibitory receptors impact the NK cell response to MCMV in other phenotypically measurable ways. More than two thirds of licensed NK cells (i.e., those expressing Ly49C, Ly49I, or both) in uninfected mice had already differentiated into NK cells with phenotypes indicative of Ag encounter (KLRG1+Ly6C-) or memory-like status (KLRG1+Ly6C+). These pre-existing KLRG1+Ly6C+ NK cells resembled known Ag-specific memory NK cell populations in being less responsive to IL-18 and IFN-α stimulation in vitro and by selecting for NK cell clones with elevated expression of a Ly49 receptor. During MCMV infection, the significant differences between licensed and unlicensed (Ly49C-Ly49I-) NK cells disappeared within both CMV-specific (Ly49H+) and nonspecific (Ly49H-) responses. This lack of heterogeneity carried into the memory phase, with only a difference in CD16 expression manifesting between licensed and unlicensed MCMV-specific memory NK cell populations. Our results suggest that restricting proliferation is the predominant effect licensing has on the NK cell population during MCMV infection, but the inhibitory Ly49-MHC interactions that take place ahead of infection contribute to their limited expansion by shrinking the pool of licensed NK cells capable of robustly responding to new challenges.
Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismoRESUMO
BACKGROUND: Treatment of salivary gland tumors (SGTs) remains challenging. Little is known about the immune landscape of SGTs. We aimed to characterize the tumor microenvironment in benign and malignant SGTs. METHODS: Eleven benign and nine malignant tumors were collected from patients undergoing curative intent surgery. Specimens were analyzed using mass cytometry by time-of-flight. Immune cell populations were manually gated, and T cells were clustered using the FlowSOM algorithm. Population frequencies were compared between high-grade and low-grade malignancies, corrected for multiple hypothesis testing. RESULTS: There were trends towards increased CD4+ and CD8+ T cells among malignant tumors. High-grade malignancies exhibited trends towards higher frequencies of CD8+ PD-1+ CD39+ CD103+ exhausted T cells, CD4+ FoxP3+ TCF-1+ CD127- Tregs, and CD69+ CD25- CD4+ T cells compared to low-grade malignancies. CONCLUSION: SGTs exhibit significant immunologic diversity. High-grade malignancies tended to have greater infiltration of exhausted CD8+ T cells and Tregs, which may guide future studies for immunotherapy strategies.
Assuntos
Neoplasias das Glândulas Salivares , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias das Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/imunologia , Neoplasias das Glândulas Salivares/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD4-Positivos/imunologia , Citometria de FluxoRESUMO
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vß-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vß and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vß chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
RESUMO
This study aimed to propose a simple and efficient heating-freezing method for oil recovery from red tilapia (Oreochromis sp.) viscera, suitable for industrial application and that does not affect its composition. Three methodologies for oil extraction were studied: a) direct heating (69 °C and 29 min) of samples followed by separation of the oil by decantation, b) direct heating with subsequent freezing and c) solvent extraction assisted by ultrasound. For the oil obtained by each methodology, the following factors were determined: peroxide and iodine values, oxidative stability index, yield percentages and fatty acid profile and, to evaluate the changes thereof, a thermal analysis by differential scanning calorimetry was performed. An oil extracted by centrifugation from fresh viscera was used as control. Results showed yields of 92,126%, 60,99% and 55,36% for the oil obtained by heating and freezing, heating and decanting and solvent extraction, respectively, the other evaluated parameters were similar among each other. The content of PUFA was not affected by heating when compared to the control oil, although a decrease was observed in the solvent extracted oil. This behavior was corroborated with the thermal analysis, which showed that the higher PUFA content, the lower the melting temperatures of the oils and the energy required for phase change. A principal component analysis allowed determining that while there are no differences in the abundance of fatty acids C20:1, 14:0, 18:0, 16:1 and C16:0, there are differences for fatty acids C18:1 and C18:2 depending on the method of extraction used in the oil obtention. The results of this study show that the heating-freezing extraction method is a good alternative for acquiring value-added products and facilitates their implementation in rural areas. Furthermore, allows obtaining a product with high content of polyunsaturated fatty acids (at least a third of the total content).
RESUMO
Many studies have provided insights into the immune response to COVID-19; however, little is known about the immunological changes and immune signaling occurring during COVID-19 resolution. Individual heterogeneity and variable disease resolution timelines obscure unifying immune characteristics. Here, we collected and profiled >200 longitudinal peripheral blood samples from patients hospitalized with COVID-19, with other respiratory infections, and healthy individuals, using mass cytometry to measure immune cells and signaling states at single cell resolution. COVID-19 patients showed a unique immune composition and an early, coordinated and elevated immune cell signaling profile, which correlated with early hospital discharge. Intra-patient time course analysis tied to clinically relevant events of recovery revealed a conserved set of immunological processes that accompany, and are unique to, disease resolution and discharge. This immunological process, together with additional changes in CD4 regulatory T cells and basophils, accompanies recovery from respiratory failure and is associated with better clinical outcomes at the time of admission. Our work elucidates the biological timeline of immune recovery from COVID-19 and provides insights into the fundamental processes of COVID-19 resolution in hospitalized patients.
RESUMO
The meningocele is the least common form of spina bifida cystica and represents less than 10% of cases of this disorder. A case of a female patient aged 26 with a history of two pregnancies and two previous cesarean sections, present pregnancy unplanned, uncontrolled during the first trimester prenatal and without supplementation with folic acid. Family history of consanguinity with her husband (second cousins) and psychomotor reassessed in four maternal cousins. The first follow-up visit the patient was at 34 weeks of pregnancy. The ultrasonographic findings were: cervical meningocele posterior filiform connection between the first and second cervical vertebrae, lateral ventriculomegaly and third and fourth ventricles and hydrocephalus secondary. Cesarean section was performed at 37 weeks gestation and was a newborn male 3.000 g, 52 cm, head circumference of 36 cm, Apgar 8/9, Capurro 37 weeks of gestation. In the posterior cervical region tumor was located a soft 5 x 5 cm with intact skin, adhered to deep planes. Movement of all four extremities without neurological involvement. He referred to the department of neurosurgery for shunt placement and subsequently performed surgical excision of the meningocele.
Assuntos
Vértebras Cervicais/anormalidades , Meningocele/patologia , Adulto , Derivações do Líquido Cefalorraquidiano , Recesariana , Consanguinidade , Feminino , Humanos , Hidrocefalia/congênito , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Meningocele/diagnóstico por imagem , Meningocele/embriologia , Meningocele/cirurgia , Gravidez , Ultrassonografia Pré-NatalRESUMO
Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.
Assuntos
Infecções Bacterianas/imunologia , Neoplasias da Mama/imunologia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Linfócitos T/imunologia , Microambiente Tumoral/genéticaRESUMO
Transforming growth factor ß (TGFß) is an effector of immune suppression and contributes to a permissive tumor microenvironment that compromises effective immunotherapy. We identified a correlation between TGFB1 and genes expressed by myeloid cells, but not granulocytes, in The Cancer Genome Atlas lung adenocarcinoma data, in which high TGFB1 expression was associated with poor survival. To determine whether TGFß affected cell fate decisions and lineage commitment, we studied primary cultures of CD14+ monocytes isolated from peripheral blood of healthy donors. We discovered that TGFß was a survival factor for CD14+ monocytes, which rapidly executed an apoptotic program in its absence. Continued exposure to TGFß in combination with granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 6 (IL6) amplified HLA-DRlowCD14+CD11b+CD33+ myeloid-derived suppressor cells (MDSCs) at the expense of macrophage and dendritic cell (DC) differentiation. MDSCs generated in the presence of TGFß were more effective in suppressing T-cell proliferation and promoted the T regulatory cell phenotype. In contrast, inhibition of TGFß signaling using a small-molecule inhibitor of receptor kinase activity in CD14+ monocytes treated with GM-CSF and IL6 decreased MDSC differentiation and increased differentiation to proinflammatory macrophages and antigen-presenting DCs. The effect of autocrine and paracrine TGFß on myeloid cell survival and lineage commitment suggests that pharmacologic inhibition of TGFß-dependent signaling in cancer would favor antitumor immunity.
Assuntos
Comunicação Autócrina , Diferenciação Celular/imunologia , Imunomodulação , Monócitos/imunologia , Monócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Apresentação de Antígeno/imunologia , Biomarcadores , Sobrevivência Celular/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Humanos , Monócitos/citologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
The success of immunotherapy has led to a myriad of clinical trials accompanied by efforts to gain mechanistic insight and identify predictive signatures for personalization. However, many immune monitoring technologies face investigator bias, missing unanticipated cellular responses in limited clinical material. We present here a mass cytometry (CyTOF) workflow for standardized, systems-level biomarker discovery in immunotherapy trials. To broadly enumerate immune cell identity and activity, we established and extensively assessed a reference panel of 33 antibodies to cover major cell subsets, simultaneously quantifying activation and immune checkpoint molecules in a single assay. This assay enumerates ≥98% of peripheral immune cells with ≥4 positively identifying antigens. Robustness and reproducibility are demonstrated on multiple samples types, across two research centers and by orthogonal measurements. Using automated analysis, we identify stratifying immune signatures in bone marrow transplantation-associated graft-versus-host disease. Together, this validated workflow ensures comprehensive immunophenotypic analysis and data comparability and will accelerate biomarker discovery.
Assuntos
Ensaios Clínicos como Assunto , Imunofenotipagem/métodos , Imunoterapia/métodos , Monitorização Imunológica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Imunofenotipagem/normas , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica/normas , Neoplasias/imunologia , Neoplasias/terapia , Padrões de ReferênciaRESUMO
In the present study, the butterhead lettuce cultivar was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI) and quadrupole time-of-flight mass spectrometry (QToF/MS) in the positive and negative ion mode in order to characterize its polyphenolic profile for the first time. The instrument acquisition mode MSE was used to collect automatic and simultaneous information of exact mass at high and low collision energies of precursor ions as well as other ions produced as a result of their fragmentation. One hundred eleven phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried leaves of butterhead lettuce cultivar: 40 hydroxycinnamic acid derivatives, 21 hydroxybenzoic acid derivatives, 2 hydroxyphenylacetic acid derivatives, 18 flavonols, 9 flavones, one flavanone, 7 coumarins, one hydrolysable tannin and 12 lignans. Forty-seven of these compounds have been tentatively identified for the first time in lettuce.