RESUMO
Tumor cells exhibit two different modes of individual cell movement. Mesenchymal-type movement is characterized by an elongated cellular morphology and requires extracellular proteolysis. In amoeboid movement, cells have a rounded morphology, are less dependent on proteases, and require high Rho-kinase signaling to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible. We show that mesenchymal-type movement in melanoma cells is driven by activation of the GTPase Rac through a complex containing NEDD9, a recently identified melanoma metastasis gene, and DOCK3, a Rac guanine nucleotide exchange factor. Rac signals through WAVE2 to direct mesenchymal movement and suppress amoeboid movement through decreasing actomyosin contractility. Conversely, in amoeboid movement, Rho-kinase signaling activates a Rac GAP, ARHGAP22, that suppresses mesenchymal movement by inactivating Rac. We demonstrate tight interplay between Rho and Rac in determining different modes of tumor cell movement, revealing how tumor cells switch between different modes of movement.
Assuntos
Movimento Celular , Melanoma/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Quimerina 1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismoRESUMO
Frizzled receptors mediate Wnt ligand signalling, which is crucially involved in regulating tissue development and differentiation, and is often deregulated in cancer. In this study, we found that the gene encoding the Wnt receptor frizzled 6 (FZD6) is frequently amplified in breast cancer, with an increased incidence in the triple-negative breast cancer (TNBC) subtype. Ablation of FZD6 expression in mammary cancer cell lines: (1) inhibited motility and invasion; (2) induced a more symmetrical shape of organoid three-dimensional cultures; and (3) inhibited bone and liver metastasis in vivo. Mechanistically, FZD6 signalling is required for the assembly of the fibronectin matrix, interfering with the organization of the actin cytoskeleton. Ectopic delivery of fibronectin in FZD6-depleted, triple-negative MDA-MB-231 cells rearranged the actin cytoskeleton and restored epidermal growth factor-mediated invasion. In patients with localized, lymph node-negative (early) breast cancer, positivity of tumour cells for FZD6 protein identified patients with reduced distant relapse-free survival. Multivariate analysis indicated an independent prognostic significance of FZD6 expression in TNBC tumours, predicting distant, but not local, relapse. We conclude that the FZD6-fibronectin actin axis identified in our study could be exploited for drug development in highly metastatic forms of breast cancer, such as TNBC. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Receptores Frizzled/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Receptores Frizzled/metabolismo , Genômica/métodos , Humanos , Prognóstico , Transdução de Sinais/genéticaRESUMO
BACKGROUND: This study focuses on the analysis of miRNAs expression data in a cohort of 181 well characterised breast cancer samples composed primarily of triple-negative (ER/PR/HER2-negative) tumours with associated genome-wide DNA and mRNA data, extensive patient follow-up and pathological information. RESULTS: We identified 7 miRNAs associated with prognosis in the triple-negative tumours and an additional 7 when the analysis was extended to the set of all ER-negative cases. miRNAs linked to an unfavourable prognosis were associated with a broad spectrum of motility mechanisms involved in the invasion of stromal tissues, such as cell-adhesion, growth factor-mediated signalling pathways, interaction with the extracellular matrix and cytoskeleton remodelling. When we compared different intrinsic molecular subtypes we found 46 miRNAs that were specifically expressed in one or more intrinsic subtypes. Integrated genomic analyses indicated these miRNAs to be influenced by DNA genomic aberrations and to have an overall influence on the expression levels of their predicted targets. Among others, our analyses highlighted the role of miR-17-92 and miR-106b-25, two polycistronic miRNA clusters with known oncogenic functions. We showed that their basal-like subtype specific up-regulation is influenced by increased DNA copy number and contributes to the transcriptional phenotype as well as the activation of oncogenic pathways in basal-like tumours. CONCLUSIONS: This study analyses previously unreported miRNA, mRNA and DNA data and integrates these with pathological and clinical information, from a well-annotated cohort of breast cancers enriched for triple-negative subtypes. It provides a conceptual framework, as well as integrative methods and system-level results and contributes to elucidate the role of miRNAs as biomarkers and modulators of oncogenic processes in these types of tumours.
Assuntos
Regulação Neoplásica da Expressão Gênica , Genômica , MicroRNAs/genética , Fenótipo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Análise por Conglomerados , Variações do Número de Cópias de DNA , Feminino , Seguimentos , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , Prognóstico , Interferência de RNA , Transcrição Gênica , Transcriptoma , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.
Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Transporte Biológico/fisiologia , Células COS , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Complexo de Golgi/ultraestrutura , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismoRESUMO
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8alpha and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.
Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Valina/metabolismo , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas da Matriz do Complexo de Golgi , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.
Assuntos
Autoantígenos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/metabolismo , Animais , Autoantígenos/genética , Sequência de Bases , Transporte Biológico Ativo , Células COS , Linhagem Celular , Chlorocebus aethiops , DNA/genética , Glicosilação , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/genética , RatosRESUMO
Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification.
Assuntos
Genômica/métodos , Neoplasias de Mama Triplo Negativas/genética , Pontos de Checagem do Ciclo Celular/genética , Variações do Número de Cópias de DNA/genética , Dano ao DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Humanos , Cinesinas/genética , Interferência de RNARESUMO
In the most widely accepted version of the cisternal maturation/progression model of intra-Golgi transport, the polarity of the Golgi complex is maintained by retrograde transport of Golgi enzymes in COPI-coated vesicles. By analyzing enzyme localization in relation to the three-dimensional ultrastructure of the Golgi complex, we now observe that Golgi enzymes are depleted in COPI-coated buds and 50- to 60-nm COPI-dependent vesicles in a variety of different cell types. Instead, we find that Golgi enzymes are concentrated in the perforated zones of cisternal rims both in vivo and in a cell-free system. This lateral segregation of Golgi enzymes is detectable in some stacks during steady-state transport, but it was significantly prominent after blocking endoplasmic reticulum-to-Golgi transport. Delivery of transport carriers to the Golgi after the release of a transport block leads to a diminution in Golgi enzyme concentrations in perforated zones of cisternae. The exclusion of Golgi enzymes from COPI vesicles and their transport-dependent accumulation in perforated zones argues against the current vesicle-mediated version of the cisternal maturation/progression model.
Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Animais , Transporte Biológico/fisiologia , Sistema Livre de Células , Células Cultivadas , Fibroblastos/citologia , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , RatosRESUMO
Despite advancements in the use of transcriptional information to understand and classify breast cancers, the contribution of splicing to the establishment and progression of these tumours has only recently starting to emerge. Our work explores this lesser known landscape, with special focus on the basal-like breast cancer subtype where limited therapeutic opportunities and no prognostic biomarkers are currently available. Using ExonArray analysis of 176 breast cancers and 9 normal breast tissues we demonstrate that splicing levels significantly contribute to the diversity of breast cancer molecular subtypes and explain much of the differences compared with normal tissues. We identified pathways specifically affected by splicing imbalances whose perturbation would be hidden from a conventional gene-centric analysis of gene expression. We found that a large fraction of them involve cell-to-cell communication, extracellular matrix and transport, as well as oncogenic and immune-related pathways transduced by plasma membrane receptors. We identified 247 genes in which splicing imbalances are associated with clinical patients' outcome, whilst no association was detectable at the gene expression level. These include the signaling gene TGFBR1, the proto-oncogene MYB as well as many immune-related genes such as CCR7 and FCRL3, reinforcing evidence for a role of immune components in influencing breast cancer patients' prognosis.
Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Neoplasias da Mama/classificação , Éxons , Feminino , Expressão Gênica , Humanos , Proto-Oncogene Mas , Transdução de SinaisRESUMO
Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis. PIM1 knockdown reduced expression of the anti-apoptotic factor BCL2, and dynamic BH3 profiling of apoptotic priming revealed that PIM1 prevents mitochondrial-mediated apoptosis in TNBC cell lines. In TNBC tumors and their cellular models, PIM1 expression was associated with several transcriptional signatures involving the transcription factor MYC, and PIM1 depletion in TNBC cell lines decreased, in a MYC-dependent manner, cell population growth and expression of the MYC target gene MCL1. Treatment with the pan-PIM kinase inhibitor AZD1208 impaired the growth of both cell line and patient-derived xenografts and sensitized them to standard-of-care chemotherapy. This work identifies PIM1 as a malignant-cell-selective target in TNBC and the potential use of PIM1 inhibitors for sensitizing TNBC to chemotherapy-induced apoptotic cell death.
Assuntos
Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-pim-1/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Variações do Número de Cópias de DNA , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Tiazolidinas/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Despite its aggressive nature, triple-negative breast cancer (TNBC) often exhibits leucocyte infiltrations that correlate with favorable prognosis. In this study, we offer an explanation for this apparent conundrum by defining TNBC cell subsets that overexpress the IL15 immune receptor IL15RA. This receptor usually forms a heterotrimer with the IL2 receptors IL2RB and IL2RG, which regulates the proliferation and differentiation of cytotoxic T cells and NK cells. However, unlike IL15RA, the IL2RB and IL2RG receptors are not upregulated in basal-like TNBC breast cancer cells that express IL15RA. Mechanistic investigations indicated that IL15RA signaling activated JAK1, STAT1, STAT2, AKT, PRAS40, and ERK1/2 in the absence of IL2RB and IL2RG, whereas neither STAT5 nor JAK2 were activated. RNAi-mediated attenuation of IL15RA established its role in cell growth, apoptosis, and migration, whereas expression of the IL15 cytokine in IL15RA-expressing cells stimulated an autocrine signaling cascade that promoted cell proliferation and migration and blocked apoptosis. Notably, coexpression of IL15RA and IL15 was also sufficient to activate peripheral blood mononuclear cells upon coculture in a paracrine signaling manner. Overall, our findings offer a mechanistic explanation for the paradoxical association of some high-grade breast tumors with better survival outcomes, due to engagement of the immune stroma.
Assuntos
Linfócitos/imunologia , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/imunologia , Proliferação de Células/genética , Feminino , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Leucócitos Mononucleares/imunologia , Camundongos , Comunicação Parácrina/genética , Comunicação Parácrina/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologiaRESUMO
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Receptores ErbB/metabolismo , Proteólise , Receptor ErbB-4/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Feminino , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Estrutura Terciária de Proteína , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptor ErbB-4/genéticaRESUMO
The urokinase-type plasminogen activator receptor (uPAR) drives tumor cell membrane protrusion and motility through activation of Rac; however, the pathway leading from uPAR to Rac activation has not been described. In this study we identify DOCK180 as the guanine nucleotide exchange factor acting downstream of uPAR. We show that uPAR cooperates with integrin complexes containing beta(3) integrin to drive formation of the p130Cas-CrkII signaling complex and activation of Rac, resulting in a Rac-driven elongated-mesenchymal morphology, cell motility, and invasion. Our findings identify a signaling pathway underlying the morphological changes and increased cell motility associated with uPAR expression.