RESUMO
We have developed a new compact and cost-efficient Laser-Raman system for the simultaneous measurement of all six hydrogen isotopologues. The focus of this research was set on producing a tool that can be implemented in virtually any existing setup providing in situ process control and analytics. The "micro Raman (µRA)" system is completely fiber-coupled for an easy setup consisting of (i) a spectrometer/CCD unit, (ii) a 532 nm laser, and (iii) a commercial Raman head coupled with a newly developed, tritium-compatible all-metal sealed DN16CF flange/Raman window serving as the process interface. To simplify the operation, we developed our own software suite for instrument control, data acquisition, and data evaluation in real-time. We have given a detailed description of the system, showing the system's capabilities in terms of the lower level of detection, and presented the results of a dedicated campaign using the accurate reference mixtures of all of the hydrogen isotopologues benchmarking µRA against two of the most sensitive Raman systems for tritium operation. Due to its modular nature, modifications that allow for the detection of various other gas species can be easily implemented.
RESUMO
Thin films of MoO3 were prepared by deposition of size-selected ligand-free Mo clusters under high vacuum conditions and subsequent exposure to air. The growth pattern is highly dependent on the cluster size. At low coverage, small clusters (Mo51) form a continuous monolayer of fused particles. On top of this monolayer, additional clusters survive as individual entities. Medium sized clusters (Mo251 and Mo1253) do not coalesce and form a monolayer of clusters. Close examination using in situ scanning tunneling microscopy reveals a local order of the particles. At higher coverage a new pattern of large 3-dimensional aggregations of clusters (pylons) appears. The pylons are not formed under high vacuum conditions. Their formation is most likely caused by the air exposure. For the largest clusters (Mo3349) studied here, no monolayer is formed. Instead, the clusters are randomly distributed as expected for particles with zero mobility. These results demonstrate the high potential of cluster deposition for the production of new types of nanostructured surfaces, thin films and nanomaterials.