Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999121

RESUMO

Ostrich meat is an interesting alternative to poultry or beef due to its nutritional value. The addition of three plant species (hot peppers, acerola, Schisandra chinesis) was suggested as a method to improve the quality, safety, and consumer acceptance of sausages prepared from ostrich meat. A series of microbiological and chemical analyses (including, inter alia, content of biogenic amines, heavy metals, and bioactive compounds) of the products as well as their sensory evaluation was performed to verify this claim. The microflora of all sausages was dominated by lactic acid bacteria. The biggest threat to consumers' health could be connected to the presence of biogenic amines formed through the enzymatic activity of lactic acid bacteria. The sausages with plant additives had better antioxidative and anti-inflammatory properties and lower fat oxidation-these features were correlated with the presence of vitamin C. Sausages with plant additives had a higher acceptability in terms of taste and smell.


Assuntos
Produtos da Carne , Struthioniformes , Produtos da Carne/análise , Produtos da Carne/microbiologia , Animais , Aditivos Alimentares/análise , Antioxidantes/análise , Paladar , Aminas Biogênicas/análise
2.
Crit Rev Food Sci Nutr ; : 1-16, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233211

RESUMO

Since the turn of the century, innovative food processing techniques have quickly risen to the top of the commercial and economic prominence food industry's priority list due to their many benefits over more conventional approaches. Compared to traditional food processing techniques, these innovative procedures retain better the distinctive aspects of food, including its organoleptic and nutritional attributes. Concurrently, there has been a discernible increase in the number of people, particularly infants and young children, who are allergic to certain foods. Although this is widely associated with shifting economic conditions in industrialized and developing countries, the rise of urbanization, the introduction of new eating patterns, and developments in food processing, it still needs to be determined how exactly these factors play a part. Under this circumstance, given the widespread presence of allergens that cause IgE-mediated reactions, it is critical to understand how the structural changes in protein as food is processed to determine whether the specific processing technique (conventional and novel) will be appropriate. This article discusses the impact of processing on protein structure and allergenicity and the implications of current research and methodologies for developing a platform to study future pathways to decrease or eliminate allergenicity in the general population.

3.
Crit Rev Food Sci Nutr ; 63(24): 6710-6722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35170397

RESUMO

In recent years, the consumption of nuts has shown an increasing trend worldwide. Nuts are an essential part of several countries' economies as an excellent source of nutrients and bioactive compounds. They are contaminated by environmental factors, improper harvesting practices, inadequate packaging procedures, improper storage, and transportation. The longer storage time also leads to the greater chances of contamination from pathogenic fungi. Nuts are infected with Aspergillus species, Penicillium species, Escherichia coli, Salmonella, and Listeria monocytogenes. Therefore, nuts are associated with a high risk of pathogens and mycotoxins, which demand the urgency of using techniques for enhancing microbial safety and shelf-life stability. Many techniques such as ozone, cold plasma, irradiation, radiofrequency have been explored for the decontamination of nuts. These techniques have different efficiencies for reducing the contamination depending on processing parameters, type of pathogen, and conditions of food material. This review provides insight into decontamination technologies for reducing microbial contamination from nuts.


Assuntos
Micotoxinas , Nozes , Nozes/química , Microbiologia de Alimentos , Salmonella , Micotoxinas/análise , Fungos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
4.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985556

RESUMO

Triterpenoids are a group of secondary plant metabolites, with a remarkable pharmacological potential, occurring in the cuticular waxes of the aerial parts of plants. The aim of this study was to analyze triterpenoid variability in the fruits and leaves of three apple cultivars during the growing season and gain new insights into their health-promoting properties and fate during juice and purée production. The identification and quantification of the compounds of interest were conducted using gas chromatography coupled with mass spectrometry. The waxes of both matrices contained similar analytes; however, their quantitative patterns varied: triterpenic acids prevailed in the fruits, while higher contents of steroids and esterified forms were observed in the leaves. The total triterpenoid content per unit area was stable during the growing season; the percentage of esters increased in the later phases of growth. Antioxidative and anti-inflammatory properties were evaluated with a series of in vitro assays. Triterpenoids were found to be the main anti-inflammatory compounds in the apples, while their impact on antioxidant capacity was minor. The apples were processed on a lab scale to obtain juices and purées. The apple purée and cloudy juice contained only some of the triterpenoids present in the raw fruit, while the clear juices were virtually free of those lipophilic compounds.


Assuntos
Malus , Triterpenos , Malus/química , Antioxidantes/análise , Triterpenos/química , Cromatografia Gasosa-Espectrometria de Massas , Frutas/química , Ceras/química
5.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985630

RESUMO

This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.


Assuntos
Alérgenos , Hipersensibilidade a Ovo , Humanos , Peptídeos/química , Ovos/análise , Proteínas do Ovo/química
6.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576196

RESUMO

Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.

7.
Crit Rev Food Sci Nutr ; : 1-27, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121429

RESUMO

Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.

8.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36268992

RESUMO

In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.

9.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296689

RESUMO

The influence of high hydrostatic pressure (HHP) and supercritical carbon dioxide (SCCD) on the bioaccessibility of betalains in beetroot (Beta vulgaris L.) juice was investigated. Freshly squeezed juice (FJ) was treated at a mild temperature of 45 °C for 10 min (T45), pasteurization at 85 °C for 10 min (T85), HHP at 200, 400, and 500 MPa at 20 °C for 5 min (HHP200, HHP400, HHP500) and SCCD at 10, 30 and 60 MPa at 45 °C for 10 min (SCCD10, SCCD30, SCCD60). The juice was subjected to an in vitro digestion system equipped with dialysis. The content of betalains was measured with the aid of a High-Performance Liquid Chromatography (HPLC), the antioxidant capacity (AC) (ABTS•+, DPPH•) was analyzed during each digestion step, and the bioaccessibility of betacyanins and betaxanthins was assessed. The SCCD at 30 and 60 MPa significantly increased pigments' bioaccessibility compared with other samples. The 30 MPa proved particularly advantageous, as it increased the bioaccessibility of the total betacyanins and the betaxanthins by 58% and 64%, respectively, compared to the T85 samples. Additionally, higher bioaccessibility of betacyanins was noted in HHP200 and HHP400, by 35% and 32%, respectively, compared to FJ, T45, and T85 samples. AC measured by ABTS•+ and DPPH• assays were not unequivocal. However, both assays showed significantly higher AC in SCCD60 compared to T85 (21% and 31%, respectively). This research contributed to the extended use of the HHP and/or SCCD to design food with higher health-promoting potentials.


Assuntos
Beta vulgaris , Betalaínas , Betalaínas/química , Beta vulgaris/química , Betaxantinas/análise , Antioxidantes/análise , Dióxido de Carbono , Betacianinas/análise , Verduras/química
10.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164299

RESUMO

Blackcurrant juice (Ribes nigrum L.) was subjected to supercritical carbon dioxide (SCCD) at 10, 30, and 60 MPa for 10 min at 45 °C, as well as thermally treated at 45 and 85 °C for 10 min to determine the stability, antioxidant capacity (AC), and bioaccessibility (BAc) of vitamin C, total anthocyanins, and their individual monomers. An in vitro gastrointestinal digestion model completed with dialysis was used to assess BAc. The use of SCCD at each of the pressures applied improved the stability of vitamin C, total anthocyanins, and AC before in vitro digestion. As a result of digestion, the total content of vitamin C, anthocyanins, and AC decreased. The highest BAc of vitamin C was noted in fresh juice (FJ) (40%) and after mild heat treatment at 45 °C (T45) (46%). The highest BAc of total anthocyanins was also noted in the FJ (4.4%). The positive effect of the application of SCCD on the BAc of the delphinidin-3-O-glycosides was observed compared to T45 and thermal pasteurization at 85 °C (T85). Although SCCD did not significantly improve the BAc of vitamin C and total anthocyanins, the higher AC of SCCD samples after intestinal digestion (ABTS+• and DPPH•) and in dialysate (ABTS+•) compared to thermally treated was observed. The protocatechuic acid was detected by UPLC-PDA-MS/MS as the major metabolite formed during the digestion of delphinidin-3-O-rutinoside. This may indicate the influence of SCCD on improvement of the accessibility of antioxidants for digestion, thanks to which more metabolites with high antioxidant activity were released.


Assuntos
Antocianinas/análise , Antioxidantes/análise , Ácido Ascórbico/análise , Sucos de Frutas e Vegetais/análise , Ribes/química , Dióxido de Carbono/química
11.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807431

RESUMO

The aim of the present study was to determine the concentrations of polyphenols and carotenoids by means of HPLC/UV-Vis in certified organic and non-organic carrots (Daucus carota L.) of two cultivars (Flacoro and Nantejska). The analyzed carrot root samples contained, on average, 4.29 ± 0.83 mg/100g f.w. of carotenoids (mainly ß-carotene) and 9.09 ± 2.97 mg/100g f.w. of polyphenols, including 4.44 ± 1.42 mg/100g f.w. of phenolic acids and 4.65 ± 1.96 mg/100g f.w. of flavonoids. Significant effects of the production system on the carotenoids (total) and ß-carotene concentration were found, with higher concentrations of these compounds generally identified in conventionally cultivated roots (4.67 ± 0.88 mg/100g f.w.) vs. organically grown ones (4.08 ± 0.74 mg/100g f.w.). There was a noticeable inter-sample (inter-farm) variation in the concentration of polyphenols in carrot roots. Despite a general trend towards higher concentrations of these compounds in the organic carrots (9.33 ± 3.17 mg/100g f.w.) vs. conventional carrots (8.64 ± 2.58 mg/100g f.w.), and in those of Nantejska (9.60 ± 2.87 mg/100g f.w.) vs. Flacoro (8.46 ± 3.02 mg/100g f.w.) cultivar, no consistent, statistically significant impact of the production system and/or cultivar on the level of these bioactive compounds was identified. More efforts should be encouraged to ensure that organic crops reaching the market consistently contain the expected high levels of health-promoting bioactive compounds, which could be brought through their shelf-life and all processing steps, in order to meet consumers' expectations and provide the expected health benefits.


Assuntos
Daucus carota , Carotenoides , Fenóis , Polifenóis , beta Caroteno
12.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825691

RESUMO

Furocoumarins are a group of plant phytoalexins exhibiting various bioactive properties; the most important of which are photosensitization and alteration of P450 cytochrome activity. Supercritical fluid extraction with carbon dioxide has been proposed as a green alternative for an organic solvent extraction of the furocoumarins. Four plant matrices rich in furocoumarins were extracted with CO2 at a temperature of 80 °C and pressure of 40 MPa, as these conditions were characterized by the highest solubility of furocoumarins. The extracts collected were analyzed using the HPLC method and the results obtained were used for the mathematical modeling of the observed phenomena. The total content of the furocoumarins in the matrices was 4.03-26.45 mg g-1 of dry weight. The impact of the process parameters on the solubility was consistent with the Chrastil equation. The broken plus intact cell model proved to be suitable to describe extraction curves obtained. The research proved the possibility of supercritical carbon dioxide utilization for the extraction of the furocoumarins from plant material and provided valuable data for prospective industrial-scale experiments.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Furocumarinas/análise , Furocumarinas/isolamento & purificação , Fármacos Fotossensibilizantes/análise , Fármacos Fotossensibilizantes/isolamento & purificação , Plantas/química , Fenômenos Fisiológicos Celulares , Furocumarinas/química , Cinética , Fármacos Fotossensibilizantes/química , Plantas/classificação
13.
Molecules ; 25(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756431

RESUMO

The aim of the study was to investigate the effect of high-pressure processing (HPP) and thermal processing (TP) on the bioaccessibility of vitamin C and anthocyanins as well as changes in the antioxidant capacity (AC) using ABTS+• and DPPH• tests on blackcurrant (Ribes nigrum L.) puree during the steps in the digestive process. The puree was subjected to HPP at 200, 400, and 600 MPa for 5 min (room temperature) or TP at 85 °C for 10 min. The controls were untreated puree (P) and fruit crushed in a mortar (M). All the samples were digested in a static in vitro digestion model, including the mouth, stomach, and small intestine, and subjected to dialysis. The vitamin C, anthocyanin, and antioxidant capacity were monitored at each step of the digestion process. The potential bioaccessibility of the antioxidants studied was calculated in relation to the undigested sample. TP and HPP enabled a high content of vitamin C, anthocyanins, and AC to be maintained. After simulated digestion in the small intestine, a significant decrease was observed in the vitamin C and anthocyanins (approximately 98%) content. However, a high stability (approximately 70%) of both compounds was noted at the gastric stage. HPP and TP significantly affected the potential bioaccessibility of vitamin C and anthocyanins, although the bioaccessibility of both compounds in the samples treated using HPP was higher than when using TP. Moreover, the potential bioaccessibility of vitamin C after HPP treatment (400 and 600 MPa) was higher than the bioaccessibility calculated for the M and P control samples. TP and HPP treatment negatively affected anthocyanin bioaccessibility after dialysis. The most favorable pressure was 400 MPa, as it allowed maintaining the best antioxidant activity after digestion.


Assuntos
Antioxidantes/química , Ribes/química , Antocianinas/análise , Antocianinas/isolamento & purificação , Ácido Ascórbico/análise , Ácido Ascórbico/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Digestão , Frutas/química , Frutas/metabolismo , Pressão Hidrostática , Ribes/metabolismo , Espectrofotometria , Temperatura
14.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825600

RESUMO

The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing's influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.


Assuntos
Glucosinolatos/uso terapêutico , Inflamação/prevenção & controle , Neoplasias/prevenção & controle , Extratos Vegetais/uso terapêutico , Plantas/química , Compostos de Enxofre/uso terapêutico , Animais , Humanos
15.
J Sci Food Agric ; 100(5): 2065-2073, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31875969

RESUMO

BACKGROUND: Polyphenol oxidase (PPO) is considered a problem in the food industry because it starts browning reactions during fruit and vegetable processing. Ultrasonic treatment is a technology used to inactivate the enzyme; however, the mechanism behind PPO inactivation is still unclear. For this reason, the inactivation, aggregation, and structural changes in PPO from quince juice subjected to ultrasonic treatments were investigated. Different intensities and times of ultrasonic treatment were used. Changes in the activity, aggregation, conformation, and structure of PPO were investigated through different structural analyses. RESULTS: Compared to untreated juice, the PPO activity in treated juice was reduced to 35% at a high ultrasonic intensity of 400 W for 20 min. The structure of PPO determined from particle size distribution (PSD) analysis showed that ultrasound treatment caused initial dissociation and subsequent aggregation leading to structural modification. The spectra of circular dichroism (CD) analysis of ultrasonic treated PPO protein showed a significant loss of α-helix, and reorganization of secondary structure. Fluorescence analysis showed a significant increase in fluorescence intensity of PPO after ultrasound treatment with evident blue shift, revealing disruption in the tertiary structure. CONCLUSION: In summary, ultrasonic treatment triggered protein aggregation, distortion of tertiary structure, and loss of α-helix conformation of secondary structure causing inactivation of the PPO enzyme. Hence, ultrasound processing at high intensity and duration could cause the inactivation of the PPO enzyme by inducing aggregation and structural modifications. © 2019 Society of Chemical Industry.


Assuntos
Catecol Oxidase/metabolismo , Sucos de Frutas e Vegetais/análise , Ultrassom , Catecol Oxidase/antagonistas & inibidores , Fenômenos Químicos , Dicroísmo Circular , Cor , Manipulação de Alimentos , Frutas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Tamanho da Partícula , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Rosaceae/química , Verduras/química
16.
Crit Rev Food Sci Nutr ; 59(18): 2879-2895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29771598

RESUMO

Natural bioactive compounds isolated from several aromatic plants have been studied for centuries due to their unique characteristics that carry great importance in food, and pharmaceutical, and cosmetic industries. For instance, several beneficial activities have been attributed to some specific compounds found in Thymus such as anti-inflammatory, antioxidant, antimicrobial, and antiseptic properties. Moreover, these compounds are classified as Generally Recognized as Safe (GRAS) which means they can be used as an ingrident of may food producs. Conventional extraction processes of these compounds and their derived forms from thyme leaves are well established. Hoewever, they present some important drawbacks such as long extraction time, low yield, high solvent consumption and degradation thermolabile compounds. Therefore, innovative extraction techniques such as ultrasound, microwave, enzyme, ohmic and heat-assisted methods can be useful strategies to enhance the exytraction yield and to reduce processing temperature, extraction time, and energy and solvent consumption. Furthermore, bioaccessibility and bioavailability aspects of these bioactive compounds as well as their metabolic fates are crucial for developing novel functional foods. Additionally, immobilization methods to improve stability, solubility, and the overall bioavailability of these valuable compounds are necessary for their commercial applications. This review aims to give an overall perspective of innovative extraction techniques to extract the targeted compounds with anti-inflammatory and antimicrobial activities. Moreover, the bioaccessi-bility and bioavailability of these compounds before and after processing discussed. In addition, some of the most important characteristics of thyme and their derived products discussed in this paper.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Indústria Alimentícia , Extratos Vegetais , Thymus (Planta) , Disponibilidade Biológica , Indústria Alimentícia/estatística & dados numéricos , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Thymus (Planta)/química
17.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783600

RESUMO

Multiple reviews have been published on various aspects of carotenoid extraction. Nevertheless, none of them focused on the discussion of recent green chemistry extraction protocols, especially for the carotenoids extraction from Daucus carota L. This group of bioactive compounds has been chosen for this review since most of the scientific papers proved their antioxidant properties relevant for inflammation, stress-related disorders, cancer, or neurological and neurodegenerative diseases, such as stroke and Alzheimer's Disease. Besides, carrots constitute one of the most popular sources of carotenoids. In the presented review emphasis has been placed on the supercritical carbon dioxide and enzyme-assisted extraction techniques for the relevant tetraterpenoids. The detailed descriptions of these methods, as well as practical examples, are provided. In addition, the pros and cons of each method and comparison with the standard solvent extraction have been discussed.


Assuntos
Dióxido de Carbono/química , Carotenoides/isolamento & purificação , Cromatografia com Fluido Supercrítico/métodos , Daucus carota/química , Química Verde/métodos , Carotenoides/química , Hidrolases/administração & dosagem , Extração Líquido-Líquido , Polissacarídeo-Liases/administração & dosagem , Solventes/química
18.
Molecules ; 24(9)2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035438

RESUMO

Jerusalem artichoke is an important natural matrix for inulin production. In this experiment, response surface methodology (RSM) was employed to optimize the spray-drying parameters in order to determine the maximal inulin yield. For this study, three independent variables (heating temperature (Tª, 110-120 °C), creep speed (V, 18-22 rpm) and pressure (P, 0.02-0.04 MPa)) were used in the experimental design. Using the Box-Behnken design, the optimal parameters obtained were: drying temperature 114.6 °C, creep speed 20.02 rpm, and pressure: 0.03 MPa. The inulin yield, water content and particle size of inulin obtained by spray-drying and freeze-drying were compared. In this regard, the spray-dried inulin consisted of a white powder having a fine particle size, and the freeze-dried inulin had a pale-yellow fluffy floc. On the other hand, the drying methods had a great influence on the appearance and internal structure of inulin powder, since the spray-dried inulin had a complete and uniform shape and size, whereas the freeze-dried inulin had a flocculated sheet structure. The analysis showed that the spray-drying led to a higher inulin yield, lower water content and better surface structure than freeze-drying.


Assuntos
Química Farmacêutica/métodos , Helianthus/química , Inulina/química , Extratos Vegetais/química , Liofilização/métodos , Inulina/ultraestrutura , Pós
19.
J Sci Food Agric ; 99(7): 3672-3680, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30638267

RESUMO

BACKGROUND: Changes in physicochemical parameters, proximate composition, amino acid and taste profiles of turkey burgers enriched by 1% with soy (control), pulses, Chlorella and Spirulina proteins were studied. RESULTS: Color parameters, pH, ash content, total, essential and non-essential amino acids were significantly different among the different types of turkey burgers prepared. In this regard, turkey burgers made with pea protein presented the highest values for pH and lightness, whereas the samples prepared with broad bean showed the highest redness. The inclusion of bean and seaweed produced a marked increase of glutamic acid, lysine and aspartic acid. However, the taste profile was similar in the different six turkey burgers studied (soy, pea, lentil, broad bean, Chlorella and Spirulina protein). Orthogonal projections to latent structures discriminant analysis (OPLS-DA) allowed to classify turkey burgers according to protein sources, as compared to soy (control). Textural parameters, moisture and color were found to be the most discriminant parameters, able to describe the differences among burgers. Nonetheless, according to the supervised OPLS model, broad beans were found to possess a similar profile to soy (control). CONCLUSION: Considering all studied parameters, the enrichment of turkey burgers with bean proteins could be used as a promising alternative to soy proteins from a technological point of view. © 2019 Society of Chemical Industry.


Assuntos
Aminoácidos/química , Chlorella/química , Aditivos Alimentares/análise , Produtos da Carne/análise , Spirulina/química , Animais , Chlorella/metabolismo , Comportamento do Consumidor , Fabaceae/química , Fabaceae/metabolismo , Manipulação de Alimentos , Humanos , Spirulina/metabolismo , Paladar , Perus
20.
Molecules ; 23(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373258

RESUMO

Apple pomace, a byproduct of juice production, is a rich source of bioactive compounds and nutrients. Supercritical fluid extraction was proposed as a method for a fast and selective extraction of hydrophobic compounds with a pharmaceutical potential from this matrix. Chromatographic analysis showed that the pomace contained significant amounts of such substances, the most abundant of them were ursolic acid, oleanolic acid, and ß-sitosterol. The solubility was chosen as a primary factor for a selection of the extraction conditions; the best results were acquired for a temperature of 80 °C and a pressure of 30 MPa. The equation proposed by Chrastil was applied for the description of the impact of the process parameters on the solubility of the analytes; the obtained values of coefficients of determination were satisfactory, despite the fact that the equation was developed for binary systems. The extraction curves obtained during the experiments were used for the description of the process kinetics using the Broken plus Intact Cell model. The impact of the temperature, pressure, and flow rate of carbon dioxide on the mass transfer phenomena was investigated. The data obtained allowed the prediction of the extraction curve for the process conducted on the larger scale.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Malus/química , Fitosteróis/química , Extratos Vegetais/química , Triterpenos/química , Dióxido de Carbono/química , Cromatografia Gasosa , Cromatografia com Fluido Supercrítico/métodos , Modelos Teóricos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA