Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
World J Microbiol Biotechnol ; 40(9): 277, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037585

RESUMO

Food insecurity and malnutrition are serious problems in many developing countries, including Ethiopia. This situation warrants an urgent need for the diversification of food sources with enhanced productivity. This study was aimed at contributing to the food security in Ethiopia through cultivation of Pleurotus ostreatus mushrooms using sustainable and locally available agro-industrial byproduct-based substrates in parallel with pollution control. Ten substrates were prepared using sugarcane bagasse, filter cake, trash, cotton seed hull and animal waste, namely cow dung and horse and chicken manure. The effect of each substrate (treatment) on the yields, biological efficiency, nutritional composition, and mineral contents of Pleurotus ostreatus mushroom species was evaluated at the Ethiopian Forest Products Innovation Center, Addis Ababa, Ethiopia. The results obtained indicate that a significantly higher (p < 0.05) yield and biological efficiency were recorded from the mushroom cultivated on S2 substrate containing a mixture of 80% sugarcane bagasse, 12% cow dung, and 8% cotton seed hull. Moreover, substrate containing sugarcane bagasse mixed with cotton seed hull, cow dung, and chicken manure significantly (p < 0.05) increased the yields and biological efficiency of the mushroom. The content of protein, crude fat, fiber, and carbohydrates of the mushroom cultivated from all the utilized substrates were in the range of 17.30-21.5, 1.77-2.52, 31.03-34.38, and 28.02-39.74%, respectively. The critical macro-elements are abundant in the mushroom in the order of potassium, magnesium, calcium, and sodium. The mushrooms cultivated on all the substrates were rich in essential micro-elements in the order of iron and zinc. It was found that substrate preparation and formulation significantly (p < 0.05) improved the yields, biological efficiency, nutritive values, and mineral contents of the mushroom. The use of these by-products as substrates is sustainable and environmentally friendly and allows the production of mushroom with high nutritional value on a sustainable basis in order to enhance food security in the country.


Assuntos
Valor Nutritivo , Pleurotus , Saccharum , Etiópia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Saccharum/metabolismo , Saccharum/química , Animais , Celulose/metabolismo , Esterco/análise , Agricultura/métodos , Bovinos , Galinhas , Minerais/análise
2.
Mycorrhiza ; 26(2): 161-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26208816

RESUMO

Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Cistus/microbiologia , Interações Microbianas , Micorrizas/crescimento & desenvolvimento , Pseudomonas fluorescens/crescimento & desenvolvimento , Simbiose , Cistus/fisiologia , Micorrizas/fisiologia , Pseudomonas fluorescens/fisiologia
3.
Sci Total Environ ; 942: 173718, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848925

RESUMO

Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.


Assuntos
Florestas , Micorrizas , Microbiologia do Solo , Árvores , Micorrizas/fisiologia , Etiópia , Árvores/microbiologia , Solo/química
4.
PLoS One ; 18(11): e0294633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019803

RESUMO

In Ethiopia, Pinus radiata and Pinus patula are extensively cultivated. Both plantations frequently serve as habitats for edible fungi, providing economic and ecological importance. Our study aims were: (i) to investigate how plantation age and tree species influence the variety of edible fungi and sporocarps production; (ii) to determine edaphic factors contributing to variations in sporocarps composition; and (iii) to establish a relationship between the most influencing edaphic factors and the production of valuable edible mushrooms for both plantation types. Sporocarps were collected weekly from permanent plots (100 m2) established in 5-, 14-, and 28-year-old stands of both species in 2020. From each plot, composite soil samples were also collected to determine explanatory edaphic variables for sporocarps production and composition. A total of 24 edible species, comprising 21 saprophytic and three ectomycorrhizal ones were identified. Agaricus campestroides, Morchella sp., Suillus luteus, Lepista sordida, and Tylopilus niger were found in both plantations. Sporocarp yields showed significant variation, with the highest mean production in 28-year-old stands of both Pinus stands. Differences in sporocarps variety were also observed between the two plantations, influenced by factors such as pH, nitrogen, phosphorus, potassium, and cation exchange capacity. Bovista dermoxantha, Coprinellus domesticus, and A. campestroides made contributions to the variety. The linear regression models indicated that the abundance of specific fungi was significantly predicted by organic matter. This insight into the nutrient requirements of various fungal species can inform for a better plantation management to produce both wood and non-wood forest products. Additionally, higher sporocarps production in older stands suggests that retaining patches of mature trees after the final cut can enhance fungal habitat, promoting diversity and yield. Thus, implementing this approach could provide supplementary income opportunities from mushroom sales and enhance the economic outputs of plantations, while mature trees could serve as a source of fungal inoculum for new plantations.


Assuntos
Agaricales , Micorrizas , Pinus , Árvores/microbiologia , Ecossistema , Florestas , Pinus/microbiologia , Solo
5.
J Fungi (Basel) ; 9(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623582

RESUMO

Edible mushrooms are seen as a way of increasing dietary diversity and achieving food security in Ethiopia. The aim of this study was to develop substrates using locally available agro-industrial by-products and animal manures to enhance the production of Shiitake (Lentinula edodes) mushrooms in Ethiopia. The hypothesis was L. edodes mushroom production on seven different substrates: 100% sugarcane bagasse (S1), 80% sugarcane bagasse, 20% cow dung (S2), horse manure (S3), chicken manure (S4), cottonseed hulls (S5), sugarcane filter cake (S6), and sugarcane trash (S7). Mushroom yield and biological efficiency were significantly affected by substrate type (p < 0.05). A significantly higher yield (434.33 g/500 g of substrate) and biological efficiency (86.83%) were obtained using substrate S4 while lower yield (120.33 g/500 g) and biological efficiency (24.33%) were obtained using substrate S7 than when using other substrates. The largest first flush of mushrooms was obtained on S4, and five flushes were produced on this substrate. S4 also had the highest biological efficiency, the highest nitrogen content, and the lowest C:N. Chicken manure is rich in nitrogen, magnesium, calcium, and potassium, which are crucial for Shiitake mushroom growth. Thus, substrate S4 would be a viable option for cultivating Shiitake mushrooms, particularly in regions where chicken manure is readily available. Substrate S2 also provided high yields and rapid fructification and would be a suitable alternative for Shiitake mushroom cultivation.

6.
Sci Total Environ ; 892: 164752, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315593

RESUMO

Straw helimulching was applied to an area with a high soil erosion risk one month after the Navalacruz megafire (Iberian Central System, Ávila, Spain) to mitigate soil erosion and to maintain soil quality. To determine whether the soil fungal community, which is key to soil and vegetation recovery after fire, is altered by straw mulching, we examined the effect of helimulching one year after its application. Three hillside zones were chosen with two treatments in each zone (mulched and non-mulched plots), with three replicates of each treatment. Chemical and genomic DNA analyses of soil samples from mulched and non-mulched plots were performed to assess the soil characteristics and the soil fungal community composition and abundance. The total fungal operational taxonomic unit richness and abundance did not differ between treatments. However, there was an increase in the richness of litter saprotrophs, plant pathogens and wood saprotrophs associated with the application of straw mulch. The total fungal composition of mulched and non-mulched plots differed significantly. Fungal composition at the phylum level correlated with the soil potassium content and marginally with the pH and phosphorus content. The application of mulch promoted the dominance of saprotrophic functional groups. Fungal composition according to guilds was also significantly different between treatments. As conclusion, the application of mulch could mean a faster recovery of saprotrophic functional groups that will be responsible for decomposing the available dead fine fuel.


Assuntos
Incêndios , Micobioma , Incêndios Florestais , Ecossistema , Solo/química , Microbiologia do Solo
7.
Sci Rep ; 13(1): 608, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635464

RESUMO

Mediterranean ecosystems are frequently invaded by pyrophytic scrubs such as Halimium lasianthum that colonize areas traditionally used by livestock. A diverse fungal community is associated with this kind of vegetation, playing an important ecological role in these ecosystems. However, uncontrolled expansion of these shrubs considerably increases the risk of wildfires in these stands and, hence, fire-prevention treatments are needed. To investigate the long-term effects of two different forest-fire-prevention treatments on the soil fungal community, we analyzed these communities 9 years after prescribed burning or mechanical shredding were carried out in scrubland dominated by H. lasianthum. Neither of the fire-prevention treatments had a negative long-term effect on the abundance or richness of ectomycorrhizal fungi. However, saprotrophs and lichenized fungi experienced negative effects. Soil fertility significantly affected the distribution of fungi according to their functional groups, and pH was the most influential variable in terms of the distribution of edible species. Our findings indicate that forest management practices to prevent forest fires does not negatively affect the fungal community in the long-term, but for lichens and decomposers. Moreover, prescribed burning is suggested as a more economical way of reducing the risk of wildfires without affecting the ecology of the fungal community.


Assuntos
Incêndios , Micobioma , Micorrizas , Ecossistema , Florestas , Solo , Incêndios/prevenção & controle
8.
Sci Rep ; 13(1): 10085, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344617

RESUMO

Oak forests accompanied by Cistus species are a common landscape in the Mediterranean basin. It is argued that Cistus dominated fields serve as recruitment areas for Quercus seedlings, as they help in the transmission of the fungal community through vegetative succession in these ecosystems. To test these assumptions, we analyzed the fungal community in terms of its richness and composition, taking into account the effects of host (Oaks vs. Cistus) and forest structure, mainly based on age. Edaphic variables related to the different structures were also analyzed to examine how they evolve through succession and relate to shifts in the fungal community. No differences in fungal richness were observed between old Cistus stands and younger Quercus, while a brief increase in ECM richness was observed. Community composition also showed a greater overlap between old Cistus and young Quercus stands. We suggest that the most important step in fungal transfer from one host to another is the shift from the oldest Cistus fields to the youngest Quercus stands, with the genera Amanita, Cortinarius, Lactarius, Inocybe, Russula, and Tomentella probably playing a major role. In summary, our work has also revealed the network of fungal community structure in the succession of Cistus to Oak stands, it would suggest that the fungi share niches and significantly enhance the ecological setting of the transition from Cistus to Oak stands.


Assuntos
Agaricales , Micobioma , Micorrizas , Quercus , Ecossistema , Quercus/microbiologia , Biodiversidade , Florestas
9.
Sci Total Environ ; 875: 162676, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894081

RESUMO

Cistus scrublands are pyrophytic ecosystems and occur widely across Mediterranean regions. Management of these scrublands is critical to prevent major disturbances, such as recurring wildfires. This is because management appears to compromise the synergies necessary for forest health and the provision of ecosystem services. Furthermore, it supports high microbial diversity, opening questions of how forest management practices impact belowground associated diversity as research related to this issue is scarce. This study aims to investigate the effects of different fire prevention treatments and site history on bacterial and fungi co-response and co-occurrence patterns over a fire-risky scrubland ecosystem. Two different site histories were studied by applying three different fire prevention treatments and samples were analyzed by amplification and sequencing of ITS2 and 16S rDNA for fungi and bacteria, respectively. The data revealed that site history, especially regarding fire occurrence, strongly influenced the microbial community. Young burnt areas tended to have a more homogeneous and lower microbial diversity, suggesting environmental filtering to a heat-resistant community. In comparison, young clearing history also showed a significant impact on the fungal community but not on the bacteria. Some bacteria genera were efficient predictors of fungal diversity and richness. For instance, Ktedonobacter and Desertibacter were a predictor of the presence of the edible mycorrhizal bolete Boletus edulis. These results demonstrate fungal and bacterial community co-response to fire prevention treatments and provide new tools for forecasting forest management impacts on microbial communities.


Assuntos
Incêndios , Microbiota , Micobioma , Ecossistema , Bactérias , Florestas , Microbiologia do Solo , Solo
10.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36294588

RESUMO

Ethiopian forests are rich in valuable types of non-wood forest products, including mushrooms. However, despite their nutritional, economic, and ecological importance, wild edible mushrooms have been given little attention and are rarely documented in Ethiopia. In this study, we assessed mushroom production levels in natural and plantation forests and the influence of climate and environmental variables on mushroom production. Sporocarps were sampled weekly from July to August 2019 at a set of permanent plots (100 m2) in both forest systems. We analyzed 63 plots to quantify sporocarp species' richness and fresh weight as well as to elucidate the degree of influence of forest types and site conditions, including soil and climate. Morphological analyses were used to identify fungi. In total, we recorded 64 wild edible fungal species belonging to 31 genera and 21 families from the plots established in the natural and plantation forests. A significantly greater total number of edible fungi were collected from natural forests (n = 40 species) than from plantations. Saprotrophs (92.19%) were the dominant guild whereas ectomycorrhizal fungi represented only 6.25% of species. Ecologically and economically important fungal species such as Agaricus campestroides, Tylopilus niger, Suillus luteus, Tricholoma portentosum, and Morchella americana were collected. The sporocarp yield obtained from plantation forests (2097.57 kg ha-1 yr-1) was significantly greater than that obtained from natural forests (731.18 kg ha-1 yr-1). The fungal community composition based on sporocarp production was mainly correlated with the organic matter, available phosphorus, and total nitrogen content of the soil, and with the daily minimum temperature during collection. Accordingly, improving edible species' richness and sporocarp production by maintaining ecosystem integrity represents a way of adding economic value to forests and maintaining biological diversity, while providing wood and non-wood forest products; we propose that this approach is imperative for managing Ethiopian forests.

11.
Sci Rep ; 12(1): 4817, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314738

RESUMO

Most of the Dry Afromontane forests in the northern part of Ethiopia are located around church territories and, hence, are called church forests. These forests are biodiversity islands and provide key ecosystem services to local communities. A previous study of church forest fungal species was based on sporocarp collections. However, to obtain a complete picture of the fungal community, the total fungal community present in the soil needs to be analyzed. This information is important to integrate church forests into global biodiversity conservation strategies and to understand what actions are required to conserve church forests and their biological components, including fungi, which are known for their exceptionally high diversity levels. We assessed soil fungal communities in three church forests using ITS2 rDNA metabarcoding. In total, 5152 fungal operational taxonomic units representing 16 fungal phyla were identified. Saprotrophs followed by ectomycorrhizal fungi and animal pathogens dominated fungal communities. Significant differences in diversity and richness were observed between forests. Non-metric multidimensional scaling confirmed that fungal community composition differed in each forest. The composition was influenced by climatic, edaphic, vegetation, and spatial variables. Linear relationships were found between tree basal area and the abundance of total fungi and trophic groups. Forest management strategies that consider cover, tree density, enrichment plantations of indigenous host tree species, and environmental factors would offer suitable habitats for fungal diversity, production, and function in these forest systems. The application of the baseline information obtained in this study could assist other countries with similar forest conservation issues due to deforestation and forest fragmentation.


Assuntos
Micobioma , Micorrizas , Biodiversidade , Ecossistema , Etiópia , Florestas , Fungos/genética , Micorrizas/genética , Solo , Microbiologia do Solo , Árvores
12.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808863

RESUMO

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Ecossistema , Humanos , Plantas , Árvores
13.
J Fungi (Basel) ; 7(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575740

RESUMO

This study is conducted in the short-rotation plantations from the Afromontane Region of Ethiopia. Sporocarps were sampled weekly in a set of permanent plots (100 m2) in young, medium-aged, and mature Pinus radiata (Don) plantations. Fungal richness, diversity, and sporocarp yields were estimated. Composite soil samples were also collected from each plot to determine explanatory edaphic variables for taxa composition. We collected 92 fungal taxa, of which 8% were ectomycorrhizal (ECM). Taxa richness, the Shannon diversity index, and ECM species richness were higher in mature stands. Interestingly, 26% of taxa were classified as edible. Sporocarp yield showed increasing trends towards matured stands. OM and C/N ratio significantly affected fungal composition and sporocarp production. The deliberate retention of mature trees in a patch form rather than clear felling of the plantations could be useful to conserve and promote fungal diversity and production, including valuable taxa such as Morchella, Suillus, and Tylopilus in older stands. This approach has important implications for forest floor microhabitats, which are important for macrofungal occurrence and production. Thus, this strategy could improve the economic outputs of these plantations in the Afromontane Region, while the mature trees could serve as a bridge for providing fungal inocula to the new plantations.

14.
Life (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946163

RESUMO

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year-1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.

15.
Microb Biotechnol ; 12(6): 1188-1198, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30989804

RESUMO

Cistus ladanifer scrublands, traditionally considered as unproductive, have nonetheless been observed to produce large quantities of king bolete (Boletus edulis) fruitbodies. These pyrophytic scrublands are prone to wildfires, which severely affect fungi, hence the need for fire prevention in producing C. ladanifer scrublands. In addition, B. edulis productions have severely decreased in the last years. A deeper understanding of the B. edulis life cycle and of biotic and abiotic factors influencing sporocarp formation is needed to implement management practices that facilitate B. edulis production. For example, some bacteria likely are involved in sporocarp production, representing a key part in the triple symbiosis (plant-fungus-bacteria). In this study, we used soil DNA metabarcoding in C. ladanifer scrublands to (i) assess the effect of site history and fire prevention treatment on bacterial richness and community composition; (ii) test if there was any correlation between various taxonomic groups of bacteria and mycelial biomass and sporocarp production of B. edulis; and to (iii) identify indicator bacteria associated with the most productive B. edulis sites. Our results show that site history drives bacterial richness and community composition, while fire prevention treatments have a weaker, but still detectable effect, particularly in the senescent plots. Sporocarp production correlated positively with genera in Verrucomicrobia. Several genera, e.g. Azospirillum and Gemmatimonas, were identified as indicators of the most productive sites, suggesting a potential biological role in B. edulis fructification. This study provides a better understanding of the triple symbiosis (plant-fungus-bacteria) involved in C. ladanifer-B. edulis systems.


Assuntos
Bactérias/classificação , Bactérias/genética , Basidiomycota/crescimento & desenvolvimento , Cistus/microbiologia , Microbiota , Microbiologia do Solo , Incêndios Florestais/prevenção & controle , Cistus/crescimento & desenvolvimento , Código de Barras de DNA Taxonômico , Metagenômica , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA