Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35890579

RESUMO

The removal of heavy metals from wastewater is an environmental challenge which demands the use of environmentally friendly materials that promote a circular economy. This study aimed to apply a novel composite of an activated nanoclay/hydrocolloid in the removal of heavy metals from wastewater. A composite blended under pressure was prepared with spray-dried hydrocolloid derived from Nostoc sphaericum algae and activated nanoclay in an acid medium and 1M NaCl. The composite and components were analyzed through infrared (IR), X-ray (XR), ζ potential, cation exchange capacity (CEC), particle size, and SEM images. The composite was subjected to the adsorption of heavy metals (Pb, As, Zn, and Cd) at pH 4.5 and the removal percentage, kinetics, and adsorption isotherms were evaluated. It was observed that the activated nanoclay and the composite that presented a particle size of around 400 nm significantly increased (p-value < 0.05) the CEC, ζ potential, the functional groups, and chelating components, removing heavy metals above 99% for Pb, As 33%, Cd 15%, and Zn 10%. Adsorption kinetics was adjusted to the pseudo second-order model (R2 > 0.98), and the Langmuir and Freundlich models better represented the sorption isotherm at 20 °C. The formulated composite presents a good ability to remove heavy metals in wastewater.

2.
Polymers (Basel) ; 14(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015678

RESUMO

The avocado fruit is an agro-industrial product with high export demand in Peru due to its sensory and nutritional qualities, which can be affected during storage. The study aimed to evaluate the effect of the application of a coating formulated with potato starch (Solanum tuberosum ssp andigena), nopal mucilage (Opuntia ficus indica), and pectin on the physicochemical and physiological properties during the storage of Fuerte and Hass avocados. Samples were taken in their harvest state from the plantation in "Occobamba", which is cultivated by the Avocado Producers Association in Chincheros, Apurímac, Peru. Physicochemical properties (titratable acidity, pH, total soluble solids) and physiological properties (weight loss, firmness, and color L* a* b*) were determined during 20 days of storage at 20 °C. The elaborated films present high transparency and low aw values. In the coated avocado of the Hass and Fuerte varieties, acidity and total soluble solids decreased significantly (p-value < 0.05) during the storage time. Weight loss and firmness of coated fruits decrease to a lesser extent. Luminosity L*, color index, and color variation showed better attributes for the coated samples. The use of coatings made with potato starch, nopal mucilage, and pectin allows the physicochemical and physiological properties of avocado fruits to be maintained for a longer time during storage.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234547

RESUMO

The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.

4.
Foods ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430903

RESUMO

Propolis is a substance with significant anti-inflammatory, anticancer, and antiviral activity, which could be used more efficiently at the nano level as an additive in the food industry. The aim was to obtain and characterize nanoencapsulated multi-floral propolis from the agro-ecological region of Apurimac, Peru. For nanoencapsulation, 5% ethanolic extracts propolis with 0.3% gum arabic and 30% maltodextrin were prepared. Then, the mixtures were dried by nano spraying at 120 °C using the smallest nebulizer. The flavonoid content was between 1.81 and 6.66 mg quercetin/g, the phenolic compounds were between 1.76 and 6.13 mg GAE/g, and a high antioxidant capacity was observed. The results of moisture, water activity, bulk density, color, hygroscopicity, solubility, yield, and encapsulation efficiency were typical of the nano spray drying process. The total organic carbon content was around 24%, heterogeneous spherical particles were observed at nanometer level (between 11.1 and 562.6 nm), with different behaviors in colloidal solution, the thermal gravimetric properties were similar in all the encapsulates, the FTIR and EDS analysis confirmed the encapsulation and the X-ray diffraction showed amorphous characteristics in the obtained material; stability and phenolic compound release studies indicated high values of 8.25-12.50 mg GAE/g between 8 and 12 h, the principal component analysis confirmed that the flora, altitude, and climate of the propolis location influenced the content of bioactive compounds, antioxidant capacity, and other properties studied. The nanoencapsulate from the district of Huancaray was the one with the best results, allowing its future use as a natural ingredient in functional foods. Nevertheless, technological, sensory, and economic studies should still be carried out.

5.
Foods ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885349

RESUMO

Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%. The mixtures were spray-dried at 120 and 140 °C. The iron content in the erythrocytes was 3.30 mg/g and between 2.32 and 2.05 mg/g for the encapsulates (p < 0.05). The yield of the treatments varied between 47.84 and 58.73%. The moisture, water activity, and bulk density were influenced by the temperature and proportion of encapsulants. The total organic carbon in the atomized samples was around 14%. The particles had diverse reddish tonalities, which were heterogeneous in their form and size; openings on their surface were also observed by SEM. The particle size was at the nanometer level, and the zeta potential (ζ) indicated a tendency to agglomerate and precipitation the solutions. The presence of iron was observed on the surface of the atomized by SEM-EDX, and FTIR confirmed the encapsulation due to the presence of the chemical groups OH, C-O, C-H, and N-H in the atomized. On the other hand, high percentages of iron release in vitro were obtained between 88.45 and 94.71%. The treatment with the lowest proportion of encapsulants performed at 140 °C obtained the best results and could potentially be used to fortify different functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA