Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 64(9): 2499-2514, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37277947

RESUMO

OBJECTIVE: Ischemic stroke is one of the main causes of death and disability worldwide and currently has limited treatment options. Electroencephalography (EEG) signals are significantly affected in stroke patients during the acute stage. In this study, we preclinically characterized the brain electrical rhythms and seizure activity during the hyperacute and late acute phases in a hemispheric stroke model with no reperfusion. METHODS: EEG signals and seizures were studied in a model of hemispheric infarction induced by permanent occlusion of the middle cerebral artery (pMCAO), which mimics the clinical condition of stroke patients with permanent ischemia. Electrical brain activity was also examined using a photothrombotic (PT) stroke model. In the PT model, we induced a similar (PT group-1) or smaller (PT group-2) cortical lesion than in the pMCAO model. For all models, we used a nonconsanguineous mouse strain that mimics human diversity and genetic variation. RESULTS: The pMCAO hemispheric stroke model exhibited thalamic-origin nonconvulsive seizures during the hyperacute stage that propagated to the thalamus and cortex. The seizures were also accompanied by progressive slowing of the EEG signal during the acute phase, with elevated delta/theta, delta/alpha, and delta/beta ratios. Cortical seizures were also confirmed in the PT stroke model of similar lesions as in the pMCAO model, but not in the PT model of smaller injuries. SIGNIFICANCE: In the clinically relevant pMCAO model, poststroke seizures and EEG abnormalities were inferred from recordings of the contralateral hemisphere (noninfarcted hemisphere), emphasizing the reciprocity of interhemispheric connections and that injuries affecting one hemisphere had consequences for the other. Our results recapitulate many of the EEG signal hallmarks seen in stroke patients, thereby validating this specific mouse model for the examination of the mechanistic aspects of brain function and for the exploration of the reversion or suppression of EEG abnormalities in response to neuroprotective and anti-epileptic therapies.


Assuntos
Transtornos Cerebrovasculares , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Acidente Vascular Cerebral/complicações , Convulsões , Encéfalo , Eletroencefalografia/efeitos adversos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Tálamo
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569630

RESUMO

Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good ß-amyloid (Aß) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aß1-40, Aß1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aß plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Tacrina/farmacologia , Tacrina/uso terapêutico , Butirilcolinesterase , Peróxido de Hidrogênio/uso terapêutico , Peptídeos beta-Amiloides , Camundongos Transgênicos , Modelos Animais de Doenças , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico
3.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806455

RESUMO

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Idoso , Boratos/farmacologia , Isquemia Encefálica/patologia , Circulação Cerebrovascular/fisiologia , Humanos , Infarto , Neuroproteção , Espécies Reativas de Oxigênio
4.
Bioorg Chem ; 86: 445-451, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771691

RESUMO

In this work six PBN-related indanonitrones 1-6 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC50 = 6.64 ±â€¯0.28 µM) as the most neuroprotective agents, and in particular, among them, indanonitrone 4 was also the most potent and balanced nitrone, showing antioxidant activity in three experiments [LOX (100 µM), APPH (51%), DPPH (36.5%)], being clearly more potent antioxidant agent than nitrone PBN. Consequently, we have identified (Z)-5-hydroxy-N-methyl-2,3-dihydro-1H-inden-1-imine oxide (4) as a hit-molecule for further investigation.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/farmacologia , Amidinas/antagonistas & inibidores , Amidinas/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/química , Relação Dose-Resposta a Droga , Humanos , Indanos/síntese química , Indanos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
J Neurochem ; 145(2): 170-182, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29315575

RESUMO

Growing evidence suggests a close relationship between Alzheimer's Disease (AD) and cerebral hypoxia. Astrocytes play a key role in brain homeostasis and disease states, while some of the earliest changes in AD occur in astrocytes. We have therefore investigated whether mutations associated with AD increase astrocyte vulnerability to ischemia. Two astroglioma cell lines derived from APPSWE /PS1A246E (APP, amyloid precursor protein; PS1, presenilin 1) transgenic mice and controls from normal mice were subjected to oxygen and glucose deprivation (OGD), an in vitro model of ischemia. Cell death was increased in the APPSWE /PS1A246E line compared to the control. Increasing extracellular calcium concentration ([Ca2+ ]) exacerbated cell death in the mutant but not in the control cells. In order to explore cellular Ca2+ homeostasis, the cells were challenged with ATP or thapsigargin and [Ca2+ ] was measured by fluorescence microscopy. Changes in cytosolic Ca2+ concentration ([Ca2+ ]c ) were potentiated in the APPSWE /PS1A246E transgenic line. Mitochondrial function was also altered in the APPSWE /PS1A246E astroglioma cells; mitochondrial membrane potential and production of reactive oxygen species were increased, while mitochondrial basal respiratory rate and ATP production were decreased compared to control astroglioma cells. These results suggest that AD mutations in astrocytes make them more sensitive to ischemia; Ca2+ dysregulation and mitochondrial dysfunction may contribute to this increased vulnerability. Our results also highlight the role of astrocyte dyshomeostasis in the pathophysiology of neurodegenerative brain disorders.


Assuntos
Doença de Alzheimer , Astrócitos , Isquemia Encefálica , Cálcio/metabolismo , Mitocôndrias/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Glucose/deficiência , Camundongos , Camundongos Transgênicos , Mutação , Oxigênio , Presenilina-1/genética
6.
Glia ; 65(4): 569-580, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28130845

RESUMO

Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580.


Assuntos
Envelhecimento , Astrócitos/fisiologia , Encéfalo/citologia , Comunicação Celular/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Acetilcolina/farmacologia , Trifosfato de Adenosina/farmacologia , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Presenilina-1/deficiência , Presenilina-1/genética , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
7.
J Psychiatry Neurosci ; 42(1): 59-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27636528

RESUMO

BACKGROUND: The heterogeneity of Alzheimer disease requires the development of multitarget drugs for treating the symptoms of the disease and its progression. Both cholinergic and monoamine oxidase dysfunctions are involved in the pathological process. Thus, we hypothesized that the development of therapies focused on these targets might be effective. We have developed and assessed a new product, coded ASS234, a multipotent acetyl and butyrylcholinesterase/monoamine oxidase A-B inhibitor with a potent inhibitory effect on amyloid-ß aggregation as well as antioxidant and antiapoptotic properties. But there is a need to reliably correlate in vitro and in vivo drug release data. METHODS: We examined the effect of ASS234 on cognition in healthy adult C57BL/6J mice in a model of scopolamine-induced cognitive impairment that often accompanies normal and pathological aging. Also, in a characterized transgenic APPswe/PS1ΔE9 mouse model of Alzheimer disease, we examined the effects of short-term ASS234 treatment on plaque deposition and gliosis using immunohistochemistry. Toxicology of ASS234 was assessed using a quantitative high-throughput in vitro cytotoxicity screening assay following the MTT assay method in HepG2 liver cells. RESULTS: In vivo, ASS234 significantly decreased scopolamine-induced learning deficits in C57BL/6J mice. Also, reduction of amyloid plaque burden and gliosis in the cortex and hippocampus was assessed. In vitro, ASS234 exhibited lesser toxicity than donepezil and tacrine. LIMITATIONS: The study was conducted in male mice only. Although the Alzheimer disease model does not recapitulate all features of the human disease, it exhibits progressive monoaminergic neurodegeneration. CONCLUSION: ASS234 is a promising alternative drug of choice to treat the cognitive decline and neurodegeneration underlying Alzheimer disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Indóis/administração & dosagem , Aprendizagem/efeitos dos fármacos , Nootrópicos/administração & dosagem , Piperidinas/administração & dosagem , Doença de Alzheimer/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Donepezila , Gliose/tratamento farmacológico , Gliose/patologia , Células Hep G2 , Hipocampo/metabolismo , Humanos , Indanos/toxicidade , Indóis/química , Indóis/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Nootrópicos/química , Nootrópicos/toxicidade , Piperidinas/química , Piperidinas/toxicidade , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Estudo de Prova de Conceito , Reconhecimento Psicológico/efeitos dos fármacos , Escopolamina , Tacrina/toxicidade
8.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1011-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984891

RESUMO

Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy.


Assuntos
Azul de Metileno/administração & dosagem , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Inibidores da Angiogênese/administração & dosagem , Animais , Animais Recém-Nascidos , Antioxidantes/administração & dosagem , Relação Dose-Resposta a Droga , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Neovascularização Retiniana/metabolismo , Retinopatia da Prematuridade/metabolismo , Resultado do Tratamento
9.
Nat Rev Cancer ; 5(11): 904-9, 2005 11.
Artigo em Inglês | MEDLINE | ID: mdl-16327767

RESUMO

In 1906, Santiago Ramón y Cajal received the Nobel Prize for his detailed description of the nervous system. But Cajal (pronounced 'Cahal') worked in many fields and his contributions to cancer research have been overlooked, mainly because his observations were published in Spanish. As we near Cajal's Nobel Prize centennial celebration, we review his histological slides, original drawings and publications that are related to cancer. There is an impressive body of evidence that shows Cajal's interest in tumour biology.


Assuntos
Oncologia/história , Neoplasias/história , Neoplasias/patologia , Anatomia/história , Animais , História do Século XIX , História do Século XX , Humanos , Imuno-Histoquímica/métodos , Patologia/história
10.
Mol Neurobiol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816676

RESUMO

The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.

11.
Sci Rep ; 13(1): 2865, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805655

RESUMO

Cerebral ischemia is a condition affecting an increasing number of people worldwide, and the main cause of disability. Current research focuses on the search for neuroprotective drugs for its treatment, based on the molecular targets involved in the ischemic cascade. Nitrones are potent antioxidant molecules that can reduce oxidative stress. Here we report the neuroprotective properties and the antioxidant power of the six new quinolylnitrones (QNs) 1-6 for their potential application in stroke therapy. QNs 1-4 are 2-chloro-8-hydroxy-substituted QNs bearing N-t-butyl or N-benzyl substituents at the nitrone motif located at C3, whereas QN5 and QN6 are 8-hydroxy QNs bearing N-t-butyl or N-benzyl substituents at the nitrone motif located at C2, respectively. In vitro neuroprotection studies using QNs 1-6 in an oxygen-glucose-deprivation model of cerebral ischemia, in human neuroblastoma cell cultures, indicate that all QNs have promising neuroprotective, anti-necrotic, anti-apoptotic, and anti-oxidant properties against experimental ischemia-reperfusion in neuronal cultures. QN6 stands out as the most balanced nitrone out of all tested QNs, as it strongly prevents decreased neuronal metabolic activity (EC50 = 3.97 ± 0.78 µM), as well as necrotic (EC50 = 3.79 ± 0.83 µM) and apoptotic cell death (EC50 = 3.99 ± 0.21 µM). QN6 showed high capacity to decrease superoxide production (EC50 = 3.94 ± 0.76 µM), similar to its parent molecule α-phenyl-tert-butyl nitrone (PBN) and the well-known anti-oxidant molecule N-acetyl-L-cysteine (NAC). Thus, QN6 demonstrated the highest antioxidant power out of the other tested QNs. Finally, in vivo treatment with QN6 in an experimental permanent stroke model elicited a significant reduction (75.21 ± 5.31%) of the volume size of brain lesion. Overall, QN6 is a potential agent for the therapy of cerebral ischemia that should be further investigated.


Assuntos
Antioxidantes , Acidente Vascular Cerebral , Humanos , Antioxidantes/farmacologia , Neuroproteção , Infarto Cerebral , Estresse Oxidativo , Anticorpos
12.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250172

RESUMO

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

13.
J Neurosci Res ; 89(5): 729-43, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21337363

RESUMO

One-third of asphyctic neonates develop long-term neurological injuries, including several degrees of ischemic proliferative retinopathy (IPR) such as retinopathy of prematurity (ROP). Given that the retina is altered by perinatal asphyxia, our aim was to study the effects of nitric oxide (NO) in the retina in order to analyze its impact on the retinal injury. Application of hypothermia was evaluated as preventive treatment. Sprague-Dawley rats were subjected to perinatal asphyxia [either at 37°C (PA group) or at 15°C (HYP group)]. Full-term rats were used as controls (CTL). A significantly increased activity of both constitutive NO synthase (nNOS, Ca(2+)-dependent) and inducible NO synthase (iNOS, Ca(2+)-independent) was observed in PA retinas from 21 days old up to 60 days old with respect to age-matched CTL, with a significant increase along the time course in the PA. nNOS was immunolocalized at amacrine, horizontal, and ganglion cells of the PA group, with a significant increase in relative optical density (R.O.D.), cellular area, and number of cells. iNOS immunoreactivity was observed in the inner nuclear layer and in the internal Müller cell processes of PA, with a significant increase in R.O.D. and colocalizing with GFAP in the 60-day-old PA group. Six nitrated protein species were increased in retinas from PA rats. Nitrotyrosine immunoreactivity showed a localization similar to that of iNOS, with increased R.O.D. in the PA group and colocalization with GFAP in 60-day-old animals. HYP prevented all the changes observed in PA rats. Although the NO system displays changes induced by hypoxia-ischemia, hypothermia application shows a strong protective effect.


Assuntos
Asfixia Neonatal/metabolismo , Hipotermia Induzida/métodos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/fisiologia , Retina/metabolismo , Doenças Retinianas/metabolismo , Animais , Asfixia Neonatal/fisiopatologia , Asfixia Neonatal/terapia , Humanos , Recém-Nascido , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/fisiopatologia , Doenças Retinianas/fisiopatologia , Doenças Retinianas/terapia
14.
Sci Rep ; 10(1): 6283, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269238

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Cells ; 9(5)2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357544

RESUMO

Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/terapia , Materiais Biocompatíveis/uso terapêutico , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Humanos , Inflamação , Nanopartículas , Neuroproteção , Estresse Oxidativo , Acidente Vascular Cerebral/metabolismo , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico
16.
Sci Rep ; 10(1): 14150, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843666

RESUMO

We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs 1-9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs 1-9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1'Z)-1,1'-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC50 = 1.24 ± 0.39 µM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Óxidos N-Cíclicos/química , Sequestradores de Radicais Livres/uso terapêutico , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Óxidos de Nitrogênio/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/induzido quimicamente , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Glucose/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neuroblastoma/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/farmacologia , Oligomicinas/toxicidade , Oxigênio/farmacologia , Rotenona/toxicidade
17.
Front Cell Neurosci ; 12: 296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237762

RESUMO

The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.

18.
J Neuropathol Exp Neurol ; 66(3): 196-207, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17356381

RESUMO

The constitutive and inducible isoforms of nitric oxide synthase (NOS) and the end-product of nitration, nitrotyrosine, were analyzed by immunohistochemistry, Western blotting, and enzymatic activity in sheep at different stages of the prion disease, scrapie. Four groups were studied: 1) nonaffected (control), 2) preclinical, 3) clinical, and 4) terminal. Constitutive neuronal NOS (nNOS) was the most abundant isoform present in cerebellar neurons of the sheep. Expression of nNOS increased in preclinical animals but diminished in the late stages of the disease. The Purkinje cells that usually are not immunoreactive for this protein became immunopositive in the clinical phase. In unaffected sheep, the inducible isoform (iNOS) was slightly positive in the Purkinje cells. As the disease progressed, the immunoreactivity of Purkinje neurons for iNOS increased. At the final stages, numerous iNOS-positive microglial cells were found in the molecular layer. There was a basal level of protein nitration in the cerebellum of unaffected sheep, especially in the molecular layer. As the disease progressed, the distal prolongations of the Purkinje cells and the astroglia became immunoreactive for nitrotyrosine. Our results suggest that the nitrergic system reacts to the progression of spongiform diseases and may be part of their pathogenesis mechanism.


Assuntos
Cerebelo/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Scrapie/patologia , Tirosina/análogos & derivados , Animais , Western Blotting/métodos , Expressão Gênica/fisiologia , Imuno-Histoquímica/métodos , Ovinos , Tirosina/metabolismo
19.
Neurosci Lett ; 415(2): 149-53, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17239538

RESUMO

Stroke affects a large number of people, especially in developed countries, but treatment options are limited. Over the years, it has become clear that nitric oxide (NO) plays a major role in this pathology and that treatments that either reduce or increase NO presence may provide an alternative route for reducing the sequelae of brain ischemia. The NO donor LA 419 previously has been shown to protect the brain tissue from ischemic damage in an experimental model of global brain ischemia. Here we study whether this holds true for focal ischemia, a condition closer to the more common form of human stroke. Ischemia was induced in rats by a stereotaxic injection of endothelin-1, a potent vasoconstrictor, in the striatum. Seven days after the injection, magnetic resonance imaging (MRI) found a significant elevation in apparent diffusion coefficient (ADC) in the injected striatum of untreated rats, due to ischemia-induced vascular edema. Animals that received LA 419 prior to injection with endothelin-1 showed an ADC undistinguishable from the contralateral striatum or from the striatum of rats not treated with LA 419. In addition, immunohistochemistry with antibodies against neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and nitrotyrosine showed a marked increase in the expression of these markers of NO production following ischemic treatment that was dampened by treatment with LA 419. In summary, our results clearly show that the NO donor LA 419 may be a useful compound for the prevention and/or treatment of focal brain ischemia.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Isquemia/complicações , Dinitrato de Isossorbida/análogos & derivados , Doadores de Óxido Nítrico/uso terapêutico , Animais , Lesões Encefálicas/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dinitrato de Isossorbida/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/metabolismo
20.
Int J Mol Med ; 19(2): 229-36, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17203196

RESUMO

Stroke represents a major clinical problem with limited available therapeutic treatments. Nitric oxide (NO) and the enzymes that produce it are involved in the pathogenesis of this disease. Here we investigated whether the novel NO donor LA 419 was able to ameliorate the consequences of stroke in an experimental model of global ischemia. We observed a sharp increase in the amounts of inducible NO synthase (iNOS) and nitrotyrosine in the cerebral cortex of experimental rats and a moderate increase of neuronal NO synthase (nNOS), as demonstrated by immunohistochemistry, Western blotting, and enzymatic activity assays. Treatment of these animals with LA 419 completely prevented ischemia-induced upregulation of nitrergic markers. Magnetic resonance imaging of the experimental brains showed a marked decrease in apparent diffusion coefficient (ADC) following ischemia-reperfusion, which was significantly corrected by pre-treatment with LA 419. These results clearly show that LA 419 is an efficient modulator of NO-related pathophysiological events and could eventually be used for the treatment of patients with cerebrovascular pathologies.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Dinitrato de Isossorbida/análogos & derivados , Doadores de Óxido Nítrico/farmacologia , Animais , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Dinitrato de Isossorbida/farmacologia , Imageamento por Ressonância Magnética , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Tirosina/análogos & derivados , Tirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA