Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Encéfalo , Neovascularização Fisiológica , Animais , Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Movimento Celular , Colágeno Tipo IV/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo , Especificidade de Órgãos , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661008

RESUMO

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Assuntos
Cílios , Mitose , Fatores de Transcrição , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HeLa , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
4.
PLoS Genet ; 14(1): e1007195, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381707

RESUMO

Rasa3 is a GTPase activating protein of the GAP1 family which targets R-Ras and Rap1. Although catalytic inactivation or deletion of Rasa3 in mice leads to severe hemorrhages and embryonic lethality, the biological function and cellular location of Rasa3 underlying these defects remains unknown. Here, using a combination of loss of function studies in mouse and zebrafish as well as in vitro cell biology approaches, we identify a key role for Rasa3 in endothelial cells and vascular lumen integrity. Specific ablation of Rasa3 in the mouse endothelium, but not in megakaryocytes and platelets, lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice. Reduced plexus/sprouts formation and vascular lumenization defects were observed when Rasa3 was specifically inactivated in mouse endothelial cells at the postnatal or adult stages. Similar results were obtained in zebrafish after decreasing Rasa3 expression. In vitro, depletion of Rasa3 in cultured endothelial cells increased ß1 integrin activation and cell adhesion to extracellular matrix components, decreased cell migration and blocked tubulogenesis. During migration, these Rasa3-depleted cells exhibited larger and more mature adhesions resulting from a perturbed dynamics of adhesion assembly and disassembly which significantly increased their life time. These defects were due to a hyperactivation of the Rap1 GTPase and blockade of FAK/Src signaling. Finally, Rasa3-depleted cells showed reduced turnover of VE-cadherin-based adhesions resulting in more stable endothelial cell-cell adhesion and decreased endothelial permeability. Altogether, our results indicate that Rasa3 is a critical regulator of Rap1 in endothelial cells which controls adhesions properties and vascular lumen integrity; its specific endothelial cell inactivation results in occluded blood vessels, hemorrhages and early embryonic death in mouse, mimicking thus the Rasa3-/- mouse phenotype.


Assuntos
Permeabilidade Capilar/genética , Adesão Celular/genética , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Megacariócitos/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Peixe-Zebra , Proteínas rap1 de Ligação ao GTP/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502121

RESUMO

Sjögren's syndrome (SS) is an exocrinopathy characterized by the hypofunction of salivary glands (SGs). Aquaporin-5 (AQP5); a water channel involved in saliva formation; is aberrantly distributed in SS SG acini and contributes to glandular dysfunction. We aimed to investigate the role of ezrin in AQP5 mislocalization in SS SGs. The AQP5-ezrin interaction was assessed by immunoprecipitation and proteome analysis and by proximity ligation assay in immortalized human SG cells. We demonstrated, for the first time, an interaction between ezrin and AQP5. A model of the complex was derived by computer modeling and in silico docking; suggesting that AQP5 interacts with the ezrin FERM-domain via its C-terminus. The interaction was also investigated in human minor salivary gland (hMSG) acini from SS patients (SICCA-SS); showing that AQP5-ezrin complexes were absent or mislocalized to the basolateral side of SG acini rather than the apical region compared to controls (SICCA-NS). Furthermore, in SICCA-SS hMSG acinar cells, ezrin immunoreactivity was decreased at the acinar apical region and higher at basal or lateral regions, accounting for altered AQP5-ezrin co-localization. Our data reveal that AQP5-ezrin interactions in human SGs could be involved in the regulation of AQP5 trafficking and may contribute to AQP5-altered localization in SS patients.


Assuntos
Aquaporina 5/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Sequência de Aminoácidos , Aquaporina 5/química , Proteínas de Transporte , Proteínas do Citoesqueleto/química , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Síndrome de Sjogren/patologia , Relação Estrutura-Atividade
6.
J Cell Sci ; 129(22): 4278-4288, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802168

RESUMO

The microtubule cytoskeleton regulates cell polarity by spatially organizing membrane trafficking and signaling processes. In epithelial cells, microtubules form parallel arrays aligned along the apico-basal axis, and recent work has demonstrated that the members of CAMSAP/Patronin family control apical tethering of microtubule minus ends. Here, we show that in mammalian intestinal epithelial cells, the spectraplakin ACF7 (also known as MACF1) specifically binds to CAMSAP3 and is required for the apical localization of CAMSAP3-decorated microtubule minus ends. Loss of ACF7 but not of CAMSAP3 or its homolog CAMSAP2 affected the formation of polarized epithelial cysts in three-dimensional cultures. In short-term epithelial polarization assays, knockout of CAMSAP3, but not of CAMSAP2, caused microtubule re-organization into a more radial centrosomal array, redistribution of Rab11-positive (also known as Rab11A) endosomes from the apical cell surface to the pericentrosomal region and inhibition of actin brush border formation at the apical side of the cell. We conclude that ACF7 is an important regulator of apico-basal polarity in mammalian intestinal cells and that a radial centrosome-centered microtubule organization can act as an inhibitor of epithelial polarity.


Assuntos
Polaridade Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células CACO-2 , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microvilosidades/metabolismo , Ligação Proteica
7.
BMC Cancer ; 18(1): 164, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415678

RESUMO

BACKGROUND: Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and vascular-disrupting activities. METHODS: The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells. We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen matrices. In vivo experiments were performed on different tumor cell lines. RESULTS: In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival. The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects. CONCLUSIONS: Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities of plocabulin.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Policetídeos/farmacologia , Pironas/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos Nus , Microtúbulos/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/prevenção & controle , Policetídeos/metabolismo , Ligação Proteica , Pironas/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
EMBO J ; 32(18): 2491-503, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23955003

RESUMO

To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion.


Assuntos
Endotélio Vascular/fisiologia , Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Neovascularização Fisiológica/fisiologia , Proteína Fosfatase 2/metabolismo , Grau de Desobstrução Vascular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Adesão Celular/fisiologia , Colágeno , Combinação de Medicamentos , Imunofluorescência , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Processamento de Imagem Assistida por Computador , Laminina , Microscopia Confocal , Proteoglicanas , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Grau de Desobstrução Vascular/genética , Peixe-Zebra
9.
Mol Cancer ; 13: 108, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24886454

RESUMO

BACKGROUND: DUSP3 phosphatase, also known as Vaccinia-H1 Related (VHR) phosphatase, encoded by DUSP3/Dusp3 gene, is a relatively small member of the dual-specificity protein phosphatases. In vitro studies showed that DUSP3 is a negative regulator of ERK and JNK pathways in several cell lines. On the other hand, DUSP3 is implicated in human cancer. It has been alternatively described as having tumor suppressive and oncogenic properties. Thus, the available data suggest that DUSP3 plays complex and contradictory roles in tumorigenesis that could be cell type-dependent. Since most of these studies were performed using recombinant proteins or in cell-transfection based assays, the physiological function of DUSP3 has remained elusive. RESULTS: Using immunohistochemistry on human cervical sections, we observed a strong expression of DUSP3 in endothelial cells (EC) suggesting a contribution for this phosphatase to EC functions. DUSP3 downregulation, using RNA interference, in human EC reduced significantly in vitro tube formation on Matrigel and spheroid angiogenic sprouting. However, this defect was not associated with an altered phosphorylation of the documented in vitro DUSP3 substrates, ERK1/2, JNK1/2 and EGFR but was associated with an increased PKC phosphorylation. To investigate the physiological function of DUSP3, we generated Dusp3-deficient mice by homologous recombination. The obtained DUSP3-/- mice were healthy, fertile, with no spontaneous phenotype and no vascular defect. However, DUSP3 deficiency prevented neo-vascularization of transplanted b-FGF containing Matrigel and LLC xenograft tumors as evidenced by hemoglobin (Hb) and FITC-dextran quantifications. Furthermore, we found that DUSP3 is required for b-FGF-induced microvessel outgrowth in the aortic ring assay. CONCLUSIONS: All together, our data identify DUSP3 as a new important player in angiogenesis.


Assuntos
Carcinoma Pulmonar de Lewis/genética , Fosfatase 3 de Especificidade Dupla/genética , Neovascularização Fisiológica/genética , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Colo do Útero/irrigação sanguínea , Colo do Útero/metabolismo , Colo do Útero/patologia , Colágeno , Combinação de Medicamentos , Fosfatase 3 de Especificidade Dupla/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Patológica/prevenção & controle , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteoglicanas , Transdução de Sinais
10.
Mediators Inflamm ; 2014: 134635, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25530680

RESUMO

Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque.


Assuntos
Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Heme Oxigenase-1/metabolismo , Lipoproteínas LDL/metabolismo , MicroRNAs/metabolismo , Peroxidase/metabolismo , Animais , Células CHO , Movimento Celular , Cricetinae , Cricetulus , Progressão da Doença , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Neovascularização Patológica , Placa Aterosclerótica/metabolismo , Transdução de Sinais , Lesões do Sistema Vascular/metabolismo , Cicatrização
11.
Retrovirology ; 9: 26, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22458338

RESUMO

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS: We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS: This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


Assuntos
Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 2 Humano/imunologia , Vírus Linfotrópico T Tipo 2 Humano/patogenicidade , Linfócitos T/imunologia , Linfócitos T/virologia , Humanos , Biologia de Sistemas/métodos , Técnicas do Sistema de Duplo-Híbrido
12.
Cell Rep ; 39(9): 110902, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649360

RESUMO

Within the central nervous system, Wnt7a/b are unambiguously discriminated from other Wnt ligands by an endothelial receptor complex made of the glycosylphosphatidylinositol (GPI)-anchored Reck and the adhesion G protein-coupled receptor (GPCR) Gpr124. Reck is a Wnt7a/b-specific receptor, while Gpr124 facilitates the delivery of Reck-bound Wnt7a/b ligands to Frizzled, through partially characterized mechanisms. We report that, in zebrafish, the Gpr124-Frizzled interactions are dominated by intracellular scaffolds that exploit the striking molecular mimicry between Gpr124 and Frizzled intracellular domains (ICDs): an internal Dvl-binding motif and a C-terminal ETTV motif that recruits Dlg4 and Magi3. By contrast, mammalian Gpr124 receptors exhibit an ICD-independent interaction mechanism governed by species-specific attributes of their transmembrane and extracellular domains. This mechanism seemingly evolved to replace the Dvl-mediated mechanism. By contrasting zebrafish, mouse, and human Gpr124, this study provides insights into the evolution of Gpr124/Reck function across the vertebrate clade, a receptor complex uniquely implicated in Wnt ligand-specific cellular responses.


Assuntos
Receptores Acoplados a Proteínas G , Via de Sinalização Wnt , Animais , Sistema Nervoso Central , Humanos , Ligantes , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra
13.
Science ; 375(6582): eabm4459, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175798

RESUMO

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas Ligadas por GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Acidente Vascular Cerebral/terapia , Proteínas Wnt/genética , Via de Sinalização Wnt , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Sistema Nervoso/embriologia , Engenharia de Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Peixe-Zebra
14.
Proc Natl Acad Sci U S A ; 105(12): 4727-32, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18339811

RESUMO

Class IIa histone deacetylases (HDACs) act as key transcriptional regulators in several important developmental programs. Their activities are controlled via phosphorylation-dependent nucleocytoplasmic shuttling. Phosphorylation of conserved serine residues triggers association with 14-3-3 proteins and cytoplasmic relocalization of class IIa HDACs, which leads to the derepression of their target genes. Although a lot of effort has been made toward the identification of the inactivating kinases that phosphorylate class IIa HDAC 14-3-3 motifs, the existence of an antagonistic protein phosphatase remains elusive. Here we identify PP2A as a phosphatase responsible for dephosphorylating the 14-3-3 binding sites in class IIa HDACs. Interestingly, dephosphorylation of class IIa HDACs by PP2A is prevented by competitive association of 14-3-3 proteins. Using both okadaic acid treatment and RNA interference, we demonstrate that PP2A constitutively dephosphorylates the class IIa member HDAC7 to control its biological functions as a regulator of T cell apoptosis and endothelial cell functions. This study unravels a dynamic interplay among 14-3-3s, protein kinases, and PP2A and provides a model for the regulation of class IIa HDACs.


Assuntos
Apoptose , Histona Desacetilases/metabolismo , Neovascularização Fisiológica , Proteína Fosfatase 2/metabolismo , Linfócitos T/citologia , Linfócitos T/enzimologia , Proteínas 14-3-3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Inibidores Enzimáticos/farmacologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Linfócitos T/efeitos dos fármacos
15.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440877

RESUMO

Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.


Assuntos
Aquaporina 5/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Células Acinares/metabolismo , Animais , Aquaporina 5/química , Aquaporina 5/genética , Sítios de Ligação , Linhagem Celular , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Síndrome de Sjogren/genética
16.
Elife ; 92020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346730

RESUMO

When a T cell and an antigen-presenting cell form an immunological synapse, rapid dynein-driven translocation of the centrosome toward the contact site leads to reorganization of microtubules and associated organelles. Currently, little is known about how the regulation of microtubule dynamics contributes to this process. Here, we show that the knockout of KIF21B, a kinesin-4 linked to autoimmune disorders, causes microtubule overgrowth and perturbs centrosome translocation. KIF21B restricts microtubule length by inducing microtubule pausing typically followed by catastrophe. Catastrophe induction with vinblastine prevented microtubule overgrowth and was sufficient to rescue centrosome polarization in KIF21B-knockout cells. Biophysical simulations showed that a relatively small number of KIF21B molecules can restrict mirotubule length and promote an imbalance of dynein-mediated pulling forces that allows the centrosome to translocate past the nucleus. We conclude that proper control of microtubule length is important for allowing rapid remodeling of the cytoskeleton and efficient T cell polarization.


The immune system is composed of many types of cells that can recognize foreign molecules and pathogens so they can eliminate them. When cells in the body become infected with a pathogen, they can process the pathogen's proteins and present them on their own surface. Specialized immune cells can then recognize infected cells and interact with them, forming an 'immunological synapse'. These synapses play an important role in immune response: they activate the immune system and allow it to kill harmful cells. To form an immunological synapse, an immune cell must reorganize its internal contents, including an aster-shaped scaffold made of tiny protein tubes called microtubules. The center of this scaffold moves towards the immunological synapse as it forms. This re-orientation of the microtubules towards the immunological synapse is known as 'polarization' and it happens very rapidly, but it is not yet clear how it works. One molecule involved in the polarization process is called KIF21B, a protein that can walk along microtubules, building up at the ends and affecting their growth. Whether KIF21B makes microtubules grow more quickly, or more slowly, is a matter of debate, and the impact microtubule length has on immunological synapse formation is unknown. Here, Hooikaas, Damstra et al. deleted the gene for KIF21B from human immune cells called T cells to find out how it affected their ability to form an immunological synapse. Without KIF21B, the T cells grew microtubules that were longer than normal, and had trouble forming immunological synapses. When the T cells were treated with a drug that stops microtubule growth, their ability to form immunological synapses was restored, suggesting a role for KIF21B. To explore this further, Hooikaas, Damstra et al. replaced the missing KIF21B gene with a gene that coded for a version of the protein that could be seen using microscopy. This revealed that, when KIF21B reaches the ends of microtubules, it stops their growth and triggers their disassembly. Computational modelling showed that cells find it hard to reorient their microtubule scaffolding when the individual tubes are too long. It only takes a small number of KIF21B molecules to shorten the microtubules enough to allow the center of the scaffold to move. Research has linked the KIF21B gene to autoimmune conditions like multiple sclerosis. Microtubules also play an important role in cell division, a critical process driving all types of cancer. Drugs that affect microtubule growth are already available, and a deeper understanding of KIF21B and microtubule regulation in immune cells could help to improve treatments in the future.


Assuntos
Centrossomo/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Linfócitos T/imunologia , Actinas/metabolismo , Células Apresentadoras de Antígenos/imunologia , Citoesqueleto/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Ativação Linfocitária
17.
Elife ; 92020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174839

RESUMO

Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.


Assuntos
Cinesinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos , Transporte Proteico , Vesículas Transportadoras , Proteínas rab de Ligação ao GTP/genética
18.
Mol Cell Biol ; 26(19): 7086-102, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980613

RESUMO

Class IIa histone deacetylases (HDACs) are found both in the cytoplasm and in the nucleus where they repress genes involved in several major developmental programs. In response to specific signals, the repressive activity of class IIa HDACs is neutralized through their phosphorylation on multiple N-terminal serine residues and 14-3-3-mediated nuclear exclusion. Here, we demonstrate that class IIa HDACs are subjected to signal-independent nuclear export that relies on their constitutive phosphorylation. We identify EMK and C-TAK1, two members of the microtubule affinity-regulating kinase (MARK)/Par-1 family, as regulators of this process. We further show that EMK and C-TAK1 phosphorylate class IIa HDACs on one of their multiple 14-3-3 binding sites and alter their subcellular localization and repressive function. Using HDAC7 as a paradigm, we extend these findings by demonstrating that signal-independent phosphorylation of the most N-terminal serine residue by the MARK/Par-1 kinases, i.e., Ser155, is a prerequisite for the phosphorylation of the nearby 14-3-3 site, Ser181. We propose that this multisite hierarchical phosphorylation by a variety of kinases allows for sophisticated regulation of class IIa HDACs function.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , Células HeLa , Histona Desacetilases/química , Humanos , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Transporte Proteico , Especificidade por Substrato
19.
Cell Death Dis ; 10(7): 512, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273193

RESUMO

Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.


Assuntos
Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Fusão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Embrião não Mamífero/metabolismo , Holoenzimas/metabolismo , Camundongos , Morfogênese , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Cell Rep ; 26(8): 1988-1999.e6, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784582

RESUMO

The motor protein kinesin-1 plays an important role in polarized sorting of transport vesicles to the axon. However, the mechanism by which the axonal entry of kinesin-1-dependent cargo transport is regulated remains unclear. Microtubule-associated protein MAP7 (ensconsin in Drosophila) is an essential kinesin-1 cofactor and promotes kinesin-1 recruitment to microtubules. Here, we found that MAP7 family member MAP7D2 concentrates at the proximal axon, where it overlaps with the axon initial segment and interacts with kinesin-1. Depletion of MAP7D2 results in reduced axonal cargo entry and defects in axon development and neuronal migration. We propose a model in which MAP7D2 in the proximal axon locally promotes kinesin-1-mediated cargo entry into the axon.


Assuntos
Transporte Axonal , Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA