Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969000

RESUMO

This study was conducted to determine if the decreased MP supply predicted by the NRC (2001) when canola meal (CM) substitutes soybean meal (SBM) was supported by direct measurement of net portal absorption of AA or energy-yielding nutrients, plus the impact of the type of forage in CM-based rations. Nine Holstein cows with indwelling catheters in splanchnic blood vessels, 8 also with a ruminal cannula were used to examine the effects of protein source in corn silage-based diets, comparing SBM versus CM, and forage source in CM-based diets, comparing corn versus grass silage. The cows were allocated to a triple 3 × 3 Latin square design with 21-d periods. The 3 experimental diets, formulated to be isoenergetic and isonitrogenous, were based on: 1) SBM and corn silage (SoyCorn); 2) CM and corn silage (CanCorn) and 3) CM and cool-season grass silage (CanGrass). Averages of intake, milk yield and milk composition of the last 3 d of each period were used for statistical analyses. On d 21 of each period, 6 sets of arterial, portal, hepatic and mammary blood samples and 2 ruminal fluid samples were collected. On d 12 of period 2, the protein sources were incubated in nylon bags to determine 16h-ruminal disappearance of DM and N and to obtain 16-h residues. Finally, 5 d after the completion of the Latin square design, the mobile bag technique was used to determine DM and N intestinal disappearance of the 16-h residues of SBM and CM. Pre-planned contrasts were used to compare the effect of the protein source in cows fed corn silage, i.e., SoyCorn versus CanCorn, and the effect of forage in cows fed CM, i.e., CanCorn versus CanGrass. Data of the cow without a rumen canula could not be used because of health problem. In corn silage-based diets, substitution of SBM by CM tended to increase milk (6%) and milk fat (7%) yields. The 8% higher ruminal N disappearance and the 19% decreased MP supply from RUP predicted by NRC (2001) were not supported by the 25% decrease in ruminal ammonia concentration, similar net portal absorption of AA (except 22% higher for Met), and the 14% decrease in urea hepatic removal when CM substituted SBM. Ruminal incubation of CM in nylon bags does not appear suitable for adequate determination of the rumen by-pass of a protein source like CM. Inclusion of grass silage rather than corn silage in CM-based diets tended to increase milk (6%) and increased milk lactose (8%) yields. Neither protein nor forage source resulted in variations of metabolism of energy-yielding nutrients that could explain observed increments in cow performance. The present study indicates no decreased AA availability when CM substitutes SBM. Therefore, substitution of SBM by CM in diets based on corn silage and CM in corn- or grass silage-diets can be used successfully in high producing dairy cows.

2.
J Dairy Sci ; 107(8): 5587-5615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38490550

RESUMO

Milk protein production is the largest draw on AA supplies for lactating dairy cattle. Prior NRC predictions of milk protein production have been absorbed protein (MP)-based and used a first-limiting nutrient concept to integrate the effects of energy and protein, which yielded poor accuracy and precision (root mean squared error [RMSE] >21%). Using a meta-data set gathered, various alternative equation forms considering MP, absorbed total EAA, absorbed individual EAA, and digested energy (DE) supplies as additive drivers of production were evaluated, and all were found to be superior in statistical performance to the first limitation approach (RMSE = 14%-15%). Inclusion of DE intake and a quadratic term for MP or absorbed EAA supplies were found to be necessary to achieve intercept estimates (nonproductive protein use) that were similar to the factorial estimates of the National Academies of Sciences, Engineering, and Medicine (2021). The partial linear slope for MP was found to be 0.409, which is consistent with the observed slope bias of -0.34 g/g when a slope of 0.67 was used for MP efficiency in a first-limiting nutrient system. Replacement of MP with the supplies of individual absorbed EAA expressed in grams per day and a common quadratic across the EAA resulted in unbiased predictions with improved statistical performance as compared with MP-based models. Based on Akaike's information criterion and biological consistency, the best equations included absorbed His, Ile, Lys, Met, Thr, the NEAA, and individual DE intakes from fatty acids, NDF, residual OM, and starch. Several also contained a term for absorbed Leu. These equations generally had RMSE of 14.3% and a concordance correlation of 0.76. Based on the common quadratic and individual linear terms, milk protein response plateaus were predicted at approximately 320 g/d of absorbed His, Ile, and Lys; 395 g/d of absorbed Thr; 550 g/d of absorbed Met; and 70 g/d of absorbed Leu. Therefore, responses to each except Leu are almost linear throughout the normal in vivo range. De-aggregation of the quadratic term and parsing to individual absorbed EAA resulted in nonbiological estimates for several EAA indicating over-parameterization. Expression of the EAA as g/100 g total absorbed EAA or as ratios of DE intake and using linear and quadratic terms for each EAA resulted in similar statistical performance, but the solutions had identifiability problems and several nonbiological parameter estimates. The use of ratios also introduced nonlinearity in the independent variables which violates linear regression assumptions. Further screening of the global model using absorbed EAA expressed as grams per day with a common quadratic using an all-models approach, and exhaustive cross-evaluation indicated the parameter estimates for BW, all 4 DE terms, His, Ile, Lys, Met, and the common quadratic term were stable, whereas estimates for Leu and Thr were known with less certainty. Use of independent and additive terms and a quadratic expression in the equation results in variable efficiencies of conversion. The additivity also provides partial substitution among the nutrients. Both of these prevent establishment of fixed nutrient requirements in support of milk protein production.


Assuntos
Aminoácidos , Dieta , Lactação , Proteínas do Leite , Leite , Animais , Bovinos , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/análise , Leite/química , Leite/metabolismo , Feminino , Dieta/veterinária , Ração Animal
3.
J Dairy Sci ; 107(6): 3573-3600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38216041

RESUMO

Adequate prediction of postruminal outflows of essential AA (EAA) is the starting point of balancing rations for EAA in dairy cows. The objective of this meta-analysis was to compare the performance of 3 dairy feed evaluation systems (National Research Council [NRC], Cornell Net Protein and Carbohydrate System version 6.5.5 [CNCPS], and National Academies of Sciences, Engineering and Medicine [NASEM]) to predict EAA outflows (Trp was not tested). The data set included a total of 354 treatment means from 70 duodenal and 24 omasal studies. To avoid Type I error, mean and linear biases were considered of concern if statistically significant and representing >5.0% of the observed mean. Analyses were conducted on raw observed values and on observations adjusted for the random effect of study. The analysis on raw data indicates the ability of the feed evaluation system to predict absolute values whereas the analysis on adjusted values indicates its ability to predict responses of EAA outflows to dietary changes. For the prediction of absolute values (based on raw data), NRC underpredicted outflows of all EAA, from 5.3% to 8.6% of the observed mean (%obs.mean) except for Leu, Lys, and Val; NASEM overpredicted Lys (10.8%obs.mean); and CNCPS overpredicted Arg, His, Lys, Met, and Val (5.2 to 26.0%obs.mean). No EAA had a linear bias of concern with NASEM, followed by NRC for His (6.8%obs.mean), and CNCPS for all EAA (5.6 to 12.2%obs.mean) except Leu, Phe, and Thr. In contrast, for the prediction of responses to dietary changes (based on adjusted data), NRC had 2 EAA presenting a linear bias of concern, followed by NASEM and CNCPS with 4 and 6 EAA, respectively. Predictions of His showed a linear bias of concern (5.3 to 9.6%obs.mean) with the 3 feed evaluation systems. Measured chemistry of crude protein and EAA were reported for 1 or more feed ingredients of the ration in 36% of the studies, and resulted in decreased linear biases in the 3 feed evaluation systems. The difference in mean biases of Met outflows was systematically positive when comparing omasal versus duodenal studies. Predictions of Met outflows with NRC had a higher concordance correlation coefficient in duodenal (used to develop NRC equations) versus omasal studies, whereas the opposite was observed with CNCPS, the latter showing the lowest mean bias for Met in omasal sampling studies. The 30% difference in Met mean biases between sampling sites appeared related to a similar difference found for observed Met versus nonammonia nitrogen outflows between duodenal and omasal studies, which is independent of predictions. In conclusion, NRC and NASEM yielded accurate predictions of EAA outflows, with a small superiority of NASEM to predict absolute values, and slight superiority of NRC to predict the responses to dietary changes. In comparison, CNCPS may present mean and linear biases of concern for many EAA. Moreover, it remains to determine which sampling site is more representative of the true supply of EAA to the cows.


Assuntos
Aminoácidos , Ração Animal , Dieta , Bovinos , Animais , Aminoácidos/metabolismo , Feminino , Dieta/veterinária , Rúmen/metabolismo , Duodeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA