Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Vet Res ; 51(1): 129, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059767

RESUMO

Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interleucina-17/imunologia , Mamíferos/imunologia , Glândulas Mamárias Animais/imunologia , Animais , Feminino
2.
Vet Pathol ; 56(5): 681-690, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106677

RESUMO

Salmonella is a major foodborne pathogen and pork is one of the main sources of human salmonellosis. Understanding the pathogenesis and progression of the infection within the host is of interest to establish potential approaches to control the disease in pigs. The present study evaluates factors such as intestinal colonization, fecal shedding, and pathogen persistence by 2 studies using experimental challenge with Salmonella Typhimurium in weaned pigs and euthanasia at different time points (1, 2, and 6 and 2, 14, and 30 days postinfection [dpi], respectively). Histopathology of intestine at early time points (1 dpi and 2 dpi) showed severe damage to the epithelium together with an increase in polymorphonuclear cells and macrophages (P < .001), particularly in jejunum and ileum. Large quantities of Salmonella were detected within the contents of the ileum, cecum, and colon in early infection. Salmonella could also be observed in the medulla of tonsils and mesenteric lymph nodes. From 6 dpi onward, signs of recovery were observed, with progressive restoration of the epithelium, reduction of the inflammatory infiltrate, and elimination of Salmonella from the mucosa. Concentration of Salmonella in feces and ileum content decreased, but shedding did not cease even at 4 weeks after infection. Persistence of the bacteria in mesenteric lymph nodes was identified within the connective tissue at 14 and 30 dpi. Our results demonstrate a recovery of the disease after an initial acute phase but also show persistence within the lumen and surrounding lymphoid tissue. These findings are relevant to developing effective control strategies.


Assuntos
Gastroenteropatias/veterinária , Trato Gastrointestinal/microbiologia , Tecido Linfoide/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Fezes/microbiologia , Gastroenteropatias/microbiologia , Suínos
3.
Front Vet Sci ; 9: 854890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464360

RESUMO

Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.

4.
Vaccines (Basel) ; 10(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214754

RESUMO

Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.

5.
Free Radic Res ; 54(2-3): 137-149, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32037913

RESUMO

Skeletal muscle is the most abundant tissue in the human body and mechanical injuries are common; these are frequently of mechanical origins, such as contusion. However, the immediate mitochondrial response to injury and energetic substrate utilisation is still unclear. We evaluated the acute response in mitochondrial function after a single muscle contusion, either in fast twitch fibres (glycolytic metabolism), fast and slow twitch (oxidative and glycolytic metabolism), or slow twitch fibres (oxidative metabolism). Rats were assigned to two groups: control and Lesion (muscle contusion). We collected the gastrocnemius and soleus muscles. The fibres were analysed for mitochondrial respiration, lactate dehydrogenase (LDH), citrate synthase (CS) activity, Ca2+ uptake, and H2O2 production. We found that muscle injury was able to increase ATP synthesis-dependent and OXPHOS oxygen flux in the oxidative fibres when stimulated by complex I + II substrates. On the other hand, the muscle injury increased hydrogen peroxide (H2O2) production when compared to control fibres, and reduced citrate synthase activity; however, it did not change Ca2+ uptake. Surprisingly, injury in mixed fibres increased the OXPHOS and ATP synthesis oxygen consumption, and H2O2 production, but it reduced Ca2+ uptake. The injury in glycolytic fibres did not affect oxygen flux coupled to ATP synthesis, citrate synthase, and lactate dehydrogenase activity, but did reduce Ca2+ uptake. Finally, we demonstrated distinct mitochondrial responses between the different muscle fibres, indicating that the mitochondrial dynamics is related to flexibilities in metabolism, and that reactive oxygen species directly affect physiology and normal function.


Assuntos
Contusões/complicações , Mitocôndrias/fisiologia , Animais , Contusões/patologia , Humanos , Fibras Musculares Esqueléticas/metabolismo , Ratos , Ratos Wistar
6.
J Proteomics ; 75(7): 2015-26, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22285631

RESUMO

The enteropathogen Salmonella Typhimurium is one of the main causes of porcine and human enterocolitis. We have used a 2-DE, MALDI-TOF/TOF-based approach to characterize in vivo proteome changes in porcine ileum mucosa after pathogen interaction. Ileum samples from non-infected and orally infected animals were collected at 2 days post infection and S. Typhimurium presence was confirmed by immunohistochemistry. Fifty one proteins, involved in immune response (acute phase response, inflammation and immune response regulation), apoptosis and pathogen-mediated cell invasion, were identified as being differentially expressed after pathogen challenge. Overall, anti-inflammatory signals and a possible down-regulation of dendritic cell maturation were observed. According to this, we identified the up-regulation of FK506-binding protein 4 (FKBP4), a negative regulator of the transcription factor IRF4 (interferon regulatory factor 4), implicated in Th2 and Th17 response. Transcriptional analysis using RT-qPCR indicated a general trend toward down-regulation of Th2 and Th17 cytokines genes, which would be in agreement with an IRF4 reduced transactivation activity. On the other hand, proteins that could be involved in maturation of Salmonella-containing vacuole and intracellular pathogen survival were up-regulated. Results derived from this study would be valuable to better characterize a possible pathogen led modulation of host responses in vivo.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Proteômica/métodos , Infecções por Salmonella/metabolismo , Salmonella typhimurium , Íleo/microbiologia , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Salmonella/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA