Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(10): 3395-404, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26836961

RESUMO

Fungal community composition often shifts in response to warmer temperatures, which might influence decomposition of recalcitrant carbon (C). We hypothesized that evolutionary trade-offs would enable recalcitrant C-using taxa to respond more positively to warming than would labile C-using taxa. Accordingly, we performed a warming experiment in an Alaskan boreal forest and examined changes in the prevalence of fungal taxa. In a complementary field trial, we characterized the ability of fungal taxa to use labile C (glucose), intermediate C (hemicellulose or cellulose), or recalcitrant C (lignin). We also assigned taxa to functional groups (e.g., free-living filamentous fungi, ectomycorrhizal fungi, and yeasts) based on taxonomic identity. We found that response to warming varied most among taxa at the order level, compared to other taxonomic ranks. Among orders, ability to use lignin was significantly related to increases in prevalence in response to warming. However, the relationship was weak, given that lignin use explained only 9% of the variability in warming responses. Functional groups also differed in warming responses. Specifically, free-living filamentous fungi and ectomycorrhizal fungi responded positively to warming, on average, but yeasts responded negatively. Overall, warming-induced shifts in fungal communities might be accompanied by an increased ability to break down recalcitrant C. This change in potential function may reduce soil C storage under global warming.


Assuntos
Ecossistema , Micorrizas , Fungos , Solo , Taiga
2.
FEMS Microbiol Ecol ; 91(2): 1-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25764551

RESUMO

In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea/genética , Clima Desértico , Ecossistema , Nitrosomonas/genética , Nitrosomonas/metabolismo , Oxirredução , Solo
3.
Science ; 340(6140): 1574-7, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23812714

RESUMO

Global warming will likely force terrestrial plant and animal species to migrate toward cooler areas or sustain range losses; whether this is also true for microorganisms remains unknown. Through continental-scale compositional surveys of soil crust microbial communities across arid North America, we observed a latitudinal replacement in dominance between two key topsoil cyanobacteria that was driven largely by temperature. The responses to temperature of enrichment cultures and cultivated strains support this contention, with one cyanobacterium (Microcoleus vaginatus) being more psychrotolerant and less thermotolerant than the other (M. steenstrupii). In view of our data and regional climate predictions, the latter cyanobacterium may replace the former in much of the studied area within the next few decades, with unknown ecological consequences for soil fertility and erodibility.


Assuntos
Cianobactérias/fisiologia , Aquecimento Global , Temperatura Alta , Microbiologia do Solo , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Filogenia , Estados Unidos
4.
Environ Pollut ; 174: 150-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23262070

RESUMO

The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types.


Assuntos
Arabidopsis/metabolismo , Compostos Férricos/metabolismo , Nanopartículas/análise , Poluentes do Solo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo , Compostos Férricos/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA