Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050619

RESUMO

LIDAL (Light Ion Detector for ALTEA, Anomalous Long-Term Effects on Astronauts) is a radiation detector designed to measure the flux, the energy spectra and, for the first time, the time-of-flight of ions in a space habitat. It features a combination of striped silicon sensors for the measurement of deposited energy (using the ALTEA device, which operated from 2006 to 2012 in the International Space Station) and fast scintillators for the time-of-flight measurement. LIDAL was tested and calibrated using the proton beam line at TIFPA (Trento Institute for Fundamental Physics Application) and the carbon beam line at CNAO (National Center for Oncology Hadron-therapy) in 2019. The performance of the time-of-flight system featured a time resolution (sigma) less than 100 ps. Here, we describe the detector and the results of these tests, providing ground calibration curves along with the methodology established for processing the detector's data. LIDAL was uploaded in the International Space Station in November 2019 and it has been operative in the Columbus module since January 2020.

2.
FASEB J ; 34(8): 10096-10106, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539174

RESUMO

Understanding molecular mechanisms responsible for bone cells unbalance in microgravity would allow the development of better countermeasures for astronauts, and eventually advancing terrestrial osteoporosis treatments. We conduct a unique investigation by using a controlled 3D in vitro cell model to mimic the bone microenvironment in microgravity aboard the SpaceX Dragon cargo ferry to the ISS. Osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (ECs), seeded on Skelite discs, were cultured w/ or w/o rec-Irisin and exposed to 14 days of microgravity in the eOSTEO hardware. Gene expression analysis was assessed, and results were compared to ground controls treated within identical payloads. Our results show that the microgravity-induced downregulation of mRNA levels of genes encoding for OB key transcription factors (Atf4 -75%, P < .01; RunX2 -87%, P < .001, Osterix -95%, P < .05 vs ground) and proteins (Collagen I -84%, P < .05; Osteoprotegerin -94%, P < .05) were prevented by irisin. Despite it was not effective in preventing Trap and Cathepsin K mRNA increase, irisin induced a 2.8-fold increase of Osteoprotegerin (P < .05) that might act for reducing osteoclastogenesis in microgravity. Our results provide evidence that irisin supports OB differentiation and activity in microgravity and it might represent a countermeasure to prevent bone loss in astronauts.


Assuntos
Diferenciação Celular/fisiologia , Fibronectinas/metabolismo , Osteoblastos/metabolismo , Ausência de Peso/efeitos adversos , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Voo Espacial/métodos
3.
NPJ Microgravity ; 10(1): 92, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362881

RESUMO

Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39271581

RESUMO

PURPOSE: To investigate the potential correlation between prolonged exposure to microgravity on the International Space Station and increased intracranial fluid pressure, which is considered a risk factor for the astronauts' vision, and to explore the feasibility of using distortion product otoacoustic emissions as a non-invasive in-flight monitor for intracranial pressure changes. METHODS: Distortion product otoacoustic emission phase measurements were taken from both ears of five astronauts pre-flight, in-flight, and post-flight. These measurements served as indirect indicators of intracranial pressure changes, given their high sensitivity to middle ear transmission alterations. The baseline pre-flight ground measurements were taken in the seated upright position. RESULTS: In-flight measurements revealed a significant systematic increase in otoacoustic phase, indicating elevated intracranial pressure during spaceflight compared to seated upright pre-flight ground baseline. Noteworthy, in two astronauts, strong agreement was also observed between the time course of the phase changes measured in the two ears during and after the mission. Reproducibility and stability of the probe placement in the ear canal were recognized as a critical issue. CONCLUSIONS: The study suggests that distortion product otoacoustic emissions hold promise as a non-invasive tool for monitoring intracranial pressure changes in astronauts during space missions. Pre-flight measurements in different body postures and probe fitting strategies based on the individual ear morphology are needed to validate and refine this approach.

5.
Int J Mol Sci ; 14(8): 17168-92, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23965979

RESUMO

Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure.


Assuntos
Suplementos Nutricionais , Estresse Oxidativo/efeitos dos fármacos , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Medicina Aeroespacial , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Radiação Cósmica/efeitos adversos , Exposição Ambiental , Humanos , Estresse Oxidativo/efeitos da radiação , Protetores contra Radiação/uso terapêutico
6.
Sci Rep ; 9(1): 8343, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171801

RESUMO

In the frame of the VITA mission of the Italian Space Agency (ASI), we addressed the problem of Space osteoporosis by using human blood-derived stem cells (BDSCs) as a suitable osteogenic differentiation model. In particular, we investigated proteomic and epigenetic changes in BDSCs during osteoblastic differentiation induced by rapamycin under microgravity conditions. A decrease in the expression of 4 embryonic markers (Sox2, Oct3/4, Nanog and E-cadherin) was found to occur to a larger extent on board the ISS than on Earth, along with an earlier activation of the differentiation process towards the osteogenic lineage. The changes in the expression of 4 transcription factors (Otx2, Snail, GATA4 and Sox17) engaged in osteogenesis supported these findings. We then ascertained whether osteogenic differentiation of BDSCs could depend on epigenetic regulation, and interrogated changes of histone H3 that is crucial in this type of gene control. Indeed, we found that H3K4me3, H3K27me2/3, H3K79me2/3 and H3K9me2/3 residues are engaged in cellular reprogramming that drives gene expression. Overall, we suggest that rapamycin induces transcriptional activation of BDSCs towards osteogenic differentiation, through increased GATA4 and Sox17 that modulate downstream transcription factors (like Runx2), critical for bone formation. Additional studies are warranted to ascertain the possible exploitation of these data to identify new biomarkers and therapeutic targets to treat osteoporosis, not only in Space but also on Earth.


Assuntos
Medicina Aeroespacial , Epigênese Genética , Osteogênese , Osteoporose/fisiopatologia , Proteoma , Ausência de Peso , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA4/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoporose/genética , Osteoporose/metabolismo , Fatores de Transcrição Otx/metabolismo , Proteômica , Fatores de Transcrição SOXF/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição da Família Snail/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA