Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 84(4): 537-544, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29967522

RESUMO

BACKGROUND: Maternal nutrient restriction (MNR) is a widespread cause of fetal growth restriction (FGR), an independent predictor of heart disease and cardiovascular mortality. Our objective was to examine the developmental and long-term impact of MNR-induced FGR on cardiac structure in a model that closely mimics human development. METHODS: A reduction in total caloric intake spanning pregestation through to lactation in guinea pig sows was used to induce FGR. Proliferation, differentiation, and apoptosis of cardiomyocytes were assessed in late-gestation fetal, neonatal, and adult guinea pig hearts. Proteomic analysis and pathway enrichment were performed on fetal hearts. RESULTS: Cardiomyocyte proliferation and the number of mononucleated cells were enhanced in the MNR-FGR fetal and neonatal heart, suggesting a delay in cardiomyocyte differentiation. In fetal hearts of MNR-FGR animals, apoptosis was markedly elevated and the total number of cardiomyocytes reduced, the latter remaining so throughout neonatal and into adult life. A reduction in total cardiomyocyte number in adult MNR-FGR hearts was accompanied by exaggerated hypertrophy and a disorganized architecture. Pathway analysis identified genes related to cell proliferation, differentiation, and survival. CONCLUSIONS: FGR influences cardiomyocyte development during critical windows of development, leading to a permanent deficiency in cardiomyocyte number and compensatory hypertrophy in a rodent model that recapitulates human development.


Assuntos
Modelos Animais de Doenças , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/fisiopatologia , Coração Fetal/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , Apoptose , Restrição Calórica , Diferenciação Celular , Proliferação de Células , Feminino , Idade Gestacional , Cobaias , Humanos , Masculino , Camundongos , Miócitos Cardíacos/citologia , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA