RESUMO
Slit is a secreted protein that has a canonical function of repelling growing axons from the CNS midline. The full-length Slit (Slit-FL) is cleaved into Slit-N and Slit-C fragments, which have potentially distinct functions via different receptors. Here, we report that the BMP-1/Tolloid family metalloprotease Tolkin (Tok) is responsible for Slit proteolysis in vivo and in vitro. In Drosophilatok mutants lacking Slit cleavage, midline repulsion of axons occurs normally, confirming that Slit-FL is sufficient to repel axons. However, longitudinal axon guidance is highly disrupted in tok mutants and can be rescued by midline expression of Slit-N, suggesting that Slit is the primary substrate for Tok in the embryonic CNS. Transgenic restoration of Slit-N or Slit-C does not repel axons in Slit-null flies. Slit-FL and Slit-N are both biologically active cues with distinct axon guidance functions in vivo Slit signaling is used in diverse biological processes; therefore, differentiating between Slit-FL and Slit fragments will be essential for evaluating Slit function in broader contexts.
Assuntos
Axônios/metabolismo , Proteína Morfogenética Óssea 1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Orientação de Axônios , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Epistasia Genética , Espaço Extracelular/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/química , Fenótipo , Ligação ProteicaRESUMO
Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.
Assuntos
Músculos Oculomotores/inervação , Nervo Oculomotor/embriologia , Animais , Axônios/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Desenvolvimento Muscular , Fator Regulador Miogênico 5/metabolismo , Músculos Oculomotores/crescimento & desenvolvimento , Músculos Oculomotores/metabolismo , Nervo Oculomotor/metabolismo , Gravidez , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2RESUMO
The majority of mouse and human genes are subject to alternative cleavage and polyadenylation (APA), which most often leads to the expression of two or more alternative length 3' untranslated region (3'-UTR) mRNA isoforms. In neural tissues, there is enhanced expression of APA isoforms with longer 3'-UTRs on a global scale, but the physiological relevance of these alternative 3'-UTR isoforms is poorly understood. Calmodulin 1 (Calm1) is a key integrator of calcium signaling that generates short (Calm1-S) and long (Calm1-L) 3'-UTR mRNA isoforms via APA. We found Calm1-L expression to be largely restricted to neural tissues in mice including the dorsal root ganglion (DRG) and hippocampus, whereas Calm1-S was more broadly expressed. smFISH revealed that both Calm1-S and Calm1-L were subcellularly localized to neural processes of primary hippocampal neurons. In contrast, cultured DRG showed restriction of Calm1-L to soma. To investigate the in vivo functions of Calm1-L, we implemented a CRISPR-Cas9 gene editing strategy to delete a small region encompassing the Calm1 distal poly(A) site. This eliminated Calm1-L expression while maintaining expression of Calm1-S Mice lacking Calm1-L (Calm1ΔL/ΔL ) exhibited disorganized DRG migration in embryos, and reduced experience-induced neuronal activation in the adult hippocampus. These data indicate that Calm1-L plays functional roles in the central and peripheral nervous systems.
Assuntos
Regiões 3' não Traduzidas/genética , Sistemas CRISPR-Cas/genética , Calmodulina/genética , Gânglios Espinais/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Isoformas de RNA/genética , RNA Mensageiro/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Edição de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Poliadenilação/genética , GravidezRESUMO
Motor neurons differentiate from progenitor cells and cluster as motor nuclei, settling next to the floor plate in the brain stem and spinal cord. Although precise positioning of motor neurons is critical for their functional input and output, the molecular mechanisms that guide motor neurons to their proper positions remain poorly understood. Here, we review recent evidence of motor neuron positioning mechanisms, highlighting situations in which motor neuron cell bodies can migrate, and experiments that show that their migration is regulated by axon guidance cues. The view that emerges is that motor neurons are actively trapped or restricted in static positions, as the cells balance a push in the dorsal direction by repulsive Slit/Robo cues and a pull in the ventral direction by attractive Netrin-1/DCC cues. These new functions of guidance cues are necessary fine-tuning to set up patterns of motor neurons at their proper positions in the neural tube during embryogenesis.
Assuntos
Orientação de Axônios , Movimento Celular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurogênese/genéticaRESUMO
The developing spinal cord builds a boundary between the CNS and the periphery, in the form of a basement membrane. The spinal cord basement membrane is a barrier that retains CNS neuron cell bodies, while being selectively permeable to specific axon types. Spinal motor neuron cell bodies are located in the ventral neural tube next to the floor plate and project their axons out through the basement membrane to peripheral targets. However, little is known about how spinal motor neuron cell bodies are retained inside the ventral neural tube, while their axons can exit. In previous work, we found that disruption of Slit/Robo signals caused motor neuron emigration outside the spinal cord. In the current study, we investigate how Slit/Robo signals are necessary to keep spinal motor neurons within the neural tube. Our findings show that when Slit/Robo signals were removed from motor neurons, they migrated outside the spinal cord. Furthermore, this emigration was associated with abnormal basement membrane protein expression in the ventral spinal cord. Using Robo2 and Slit2 conditional mutants, we found that motor neuron-derived Slit/Robo signals were required to set up a normal basement membrane in the spinal cord. Together, our results suggest that motor neurons produce Slit signals that are required for the basement membrane assembly to retain motor neuron cell bodies within the spinal cord.
Assuntos
Membrana Basal/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/fisiologia , Tubo Neural/citologia , Receptores Imunológicos/fisiologia , Medula Espinal/embriologia , Animais , Movimento Celular , Distroglicanas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores Imunológicos/genética , Transdução de Sinais , Medula Espinal/citologia , Proteínas RoundaboutRESUMO
In the spinal cord, motor axons project out the neural tube at specific exit points, then bundle together to project toward target muscles. The molecular signals that guide motor axons to and out of their exit points remain undefined. Since motor axons and their exit points are located near the floor plate, guidance signals produced by the floor plate and adjacent ventral tissues could influence motor axons as they project toward and out of exit points. The secreted Slit proteins are major floor plate repellents, and motor neurons express two Slit receptors, Robo1 and Robo2. Using mutant mouse embryos at early stages of motor axon exit, we found that motor exit points shifted ventrally in Robo1/2 or Slit1/2 double mutants. Along with the ventral shift, mutant axons had abnormal trajectories both within the neural tube toward the exit point, and after exit into the periphery. In contrast, the absence of the major ventral attractant, Netrin-1, or its receptor, DCC caused motor exit points to shift dorsally. Netrin-1 attraction on spinal motor axons was demonstrated by in vitro explant assays, showing that Netrin-1 increased outgrowth and attracted cultured spinal motor axons. The opposing effects of Slit/Robo and Netrin-1/DCC signals were tested genetically by combining Netrin-1 and Robo1/2 mutations. The location of exit points in the combined mutants was significantly recovered to their normal position compared to Netrin-1 or Robo1/2 mutants. Together, these results suggest that the proper position of motor exit points is determined by a "push-pull" mechanism, pulled ventrally by Netrin-1/DCC attraction and pushed dorsally by Slit/Robo repulsion.
Assuntos
Axônios/fisiologia , Glicoproteínas/fisiologia , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Netrinas/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/metabolismo , Movimento Celular/fisiologia , Receptor DCC/metabolismo , Camundongos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrinas/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Tubo Neural/fisiologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas RoundaboutRESUMO
Ablation of a single miRNA gene rarely leads to a discernable developmental phenotype in mice, in some cases because of compensatory effects by other functionally related miRNAs. Here, we report that simultaneous inactivation of two functionally related miRNA clusters (miR-34b/c and miR-449) encoding five miRNAs (miR-34b, miR-34c, miR-449a, miR-449b, and miR-449c) led to sexually dimorphic, partial perinatal lethality, growth retardation, and infertility. These developmental defects correlated with the dysregulation of â¼ 240 target genes, which are mainly involved in three major cellular functions, including cell-fate control, brain development and microtubule dynamics. Our data demonstrate an essential role of a miRNA family in brain development, motile ciliogenesis, and spermatogenesis.
Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Família Multigênica/fisiologia , Espermatogênese/fisiologia , Animais , Cílios/genética , Cílios/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genéticaRESUMO
Commissural axons grow along precise trajectories that are guided by several cues secreted from the ventral midline. After initial attraction to the floor plate using Netrin1 activation of its main attractive receptor, DCC (deleted in colorectal cancer), axons cross the ventral midline, and many turn to grow longitudinally on the contralateral side. After crossing the midline, axons are thought to lose their responsiveness to Netrin1 and become sensitive to midline Slit-Robo repulsion. We aimed to address the in vivo significance of Netrin1 in guiding post-crossing axon trajectories in mouse embryos. Surprisingly, in contrast to the spinal cord, Netrin1 and DCC mutants had abundant commissural axons crossing in the hindbrain. In Netrin1 and DCC mutants, many post-crossing axons made normal turns to grow longitudinally, but projected abnormally at angles away from the midline. In addition, exposure of cultured hindbrain explants to ectopic Netrin1 caused attractive deflection of post-crossing axons. Thus, Netrin1-DCC signaling is not required to attract pre-crossing axons toward the hindbrain floor plate, but is active in post-crossing guidance. Also in contrast with spinal cord, analysis of hindbrain post-crossing axons in Robo1/2 mutant embryos showed that Slit-Robo repulsive signaling was not required for post-crossing trajectories. Our findings show that Netrin1-DCC attractive signaling, but not Slit-Robo repulsive signaling, remains active in hindbrain post-crossing commissural axons to guide longitudinal trajectories, suggesting surprising regional diversity in commissural axon guidance mechanisms. SIGNIFICANCE STATEMENT: The left and right sides of the brainstem and spinal cord are connected primarily by axon fibers that grow across the ventral midline, and then away on the other side to their targets. Based on spinal cord, axons are initially attracted by diffusible attractive protein signals to approach and cross the midline, and then are thought to switch to repulsive cues to grow away on the opposite side. Our results in the hindbrain show that the major midline attractant, Netrin1, is not required for midline crossing. However, the post-crossing axons depend on Netrin1 attraction to set their proper trajectories on the other side. Overall, these findings suggest that commissural axons use distinct mechanisms to navigate in different CNS regions.
Assuntos
Axônios/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Receptores de Superfície Celular/metabolismo , Rombencéfalo/citologia , Rombencéfalo/fisiopatologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Axônios/ultraestrutura , Células Cultivadas , Receptor DCC , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Netrina-1RESUMO
Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.
Assuntos
Neurônios Motores/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Axônios/metabolismo , Corpo Celular/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Receptor DCC , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Netrina-1 , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas RoundaboutRESUMO
Axons crossing the CNS midline regulate their responsiveness to both attractive and repulsive cues. In this issue, Dailey-Krempel et al. find different modes of action for DCC isoforms and uncover evidence against the silencing model of axon guidance.
Assuntos
Axônios , Axônios/fisiologiaRESUMO
Pioneer longitudinal axons grow long distances parallel to the floor plate and precisely maintain their positions using guidance molecules released from the floor plate. Two receptors, Robo1 and Robo2, are critical for longitudinal axon guidance by the Slit family of chemorepellents. Previous studies showed that Robo1(-/-);2(-/-) double mutant mouse embryos have disruptions in both ventral and dorsal longitudinal tracts. However, the role of each Robo isoform remained unclear, because Robo1 or 2 single mutants have mild or no errors. Here we utilized a more sensitive genetic strategy to reduce Robo levels for determining any separate functions of the Robo1 and 2 isoforms. We found that Robo1 is the predominant receptor for guiding axons in ventral tracts and prevents midline crossing. In contrast, Robo2 is the main receptor for directing axons within dorsal tracts. Robo2 also has a distinct function in repelling neuron cell bodies from the floor plate. Therefore, while Robo1 and 2 have some genetic overlap to cooperate in guiding longitudinal axons, each isoform has distinct functions in specific longitudinal axon populations.
Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Central/embriologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Sistema Nervoso Central/citologia , Imuno-Histoquímica , Camundongos , Proteínas RoundaboutRESUMO
Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.
Assuntos
Axônios/fisiologia , Diencéfalo/anatomia & histologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesencéfalo/anatomia & histologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Movimento Celular/fisiologia , Dopamina/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/fisiologia , Receptores Imunológicos/genética , Transdução de Sinais/fisiologia , Proteínas RoundaboutRESUMO
During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.
Assuntos
Axônios/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Prosencéfalo/embriologia , Receptores Imunológicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Axônios/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Vias Neurais/anormalidades , Vias Neurais/embriologia , Vias Neurais/fisiologia , Prosencéfalo/anormalidades , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Proteínas RoundaboutRESUMO
Distinct olfactory bulb (OB) interneurons are thought to become specified depending on from which of the different subregions lining the lateral ventricle wall they originate, but the role of region-specific transcription factors (TFs) in the generation of OB interneurons diversity is still poorly understood. Despite the crucial roles of the Dlx family of TFs for patterning and neurogenesis in the ventral telencephalon during embryonic development, their role in adult neurogenesis has not yet been addressed. Here we show that in the adult brain, Dlx 1 and Dlx2 are expressed in progenitors of the lateral but not the dorsal subependymal zone (SEZ), thus exhibiting a striking regional specificity. Using retroviral vectors to examine the function of Dlx2 in a cell-autonomous manner, we demonstrate that this TF is necessary for neurogenesis of virtually all OB interneurons arising from the lateral SEZ. Beyond its function in generic neurogenesis, Dlx2 also plays a crucial role in neuronal subtype specification in the OB, promoting specification of adult-born periglomerular neurons (PGNs) toward a dopaminergic fate. Strikingly, Dlx2 requires interaction with Pax6, because Pax6 deletion blocks Dlx2-mediated PGN specification. Thus, Dlx2 wields a dual function by first instructing generic neurogenesis from adult precursors and subsequently specifying PGN subtypes in conjunction with Pax6.
Assuntos
Linhagem da Célula/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Neurônios/fisiologia , Bulbo Olfatório/metabolismo , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Fatores Etários , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas do Olho/fisiologia , Feminino , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/fisiologia , Gravidez , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologiaRESUMO
The facial nerve is necessary for our ability to eat, speak, and make facial expressions. Both the axons and cell bodies of the facial nerve undergo a complex embryonic developmental pattern involving migration of the cell bodies caudally and tangentially through rhombomeres, and simultaneously the axons projecting to exit the hindbrain to form the facial nerve. Our goal in this study was to test the functions of the chemorepulsive receptors Robo1 and Robo2 in facial neuron migration and axon projection by analyzing genetically marked motor neurons in double-mutant mouse embryos through the migration time course, E10.0-E13.5. In Robo1/2 double mutants, axon projection and cell body migration errors were more severe than in single mutants. Most axons did not make it to their motor exit point, and instead projected into and longitudinally within the floor plate. Surprisingly, some facial neurons had multiple axons exiting and projecting into the floor plate. At the same time, a subset of mutant facial cell bodies failed to migrate caudally, and instead either streamed dorsally toward the exit point or shifted into the floor plate. We conclude that Robo1 and Robo2 have redundant functions to guide multiple aspects of the complex cell migration of the facial nucleus, as well as regulating axon trajectories and suppressing formation of ectopic axons.
Assuntos
Orientação de Axônios , Axônios/fisiologia , Movimento Celular , Nervo Facial/embriologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Rombencéfalo/embriologia , Animais , Camundongos Transgênicos , Neurônios Motores/fisiologia , Proteínas RoundaboutRESUMO
Navigating growth cones are exposed to multiple signals simultaneously and have to integrate competing cues into a coherent navigational response. Integration of guidance cues is traditionally thought to occur at the level of cytoskeletal dynamics. Drosophila studies indicate that cells exhibit a low level of continuous caspase protease activation, and that axon guidance cues can activate or suppress caspase activity. We base a model for axon guidance on these observations. By analogy with other systems in which caspase signaling has non-apoptotic functions, we propose that caspase signaling can either reinforce repulsion or negate attraction in response to external guidance cues by cleaving cytoskeletal proteins. Over the course of an entire trajectory, incorrectly navigating axons may pass the threshold for apoptosis and be eliminated, whereas axons making correct decisions will survive. These observations would also explain why neurotrophic factors can act as axon guidance cues and why axon guidance systems such as Slit/Robo signaling may act as tumor suppressors in cancer.
RESUMO
Stereotypic cell migrations in the developing brain are fundamental for the proper patterning of brain regions and formation of neural networks. In this work, we uncovered in the developing rat, a population of neurons expressing tyrosine hydroxylase (TH) that migrates posteriorly from the alar plate of the midbrain, in neurophilic interaction with axons of the mesencephalic nucleus of the trigeminal nerve. A fraction of this population was also shown to traverse the mid-hindbrain boundary, reaching the vicinity of the locus coeruleus (LC) in rhombomere 1 (r1). This migratory population, however, does not have a noradrenergic (NA) phenotype and, in keeping with its midbrain origin, expresses Otx2 which is down regulated upon migration into the hindbrain. The interaction with the trigeminal mesencephalic axons is necessary for the arrangement and distribution of migratory cells as these aspects are dramatically altered in whole embryo cultures upon disruption of trigeminal axon projection by interfering with DCC function. Moreover, in mouse embryos in an equivalent developmental stage, we detected a cell population that also migrates caudally within the midbrain apposed to mesencephalic trigeminal axons but that does not express TH; a fraction of this population expresses calbindin instead. Overall, our work identified TH-expressing neurons from the rat midbrain alar plate that migrate tangentially over long distances within the midbrain and into the hindbrain by means of a close interaction with trigeminal mesencephalic axons. A different migratory population in this region and also in mouse embryos revealed diversity among the cells that follow this descending migratory pathway.
RESUMO
Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module. CYRI-depleted cells have broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted cells are larger and longer lived. Conversely, CYRI overexpression suppresses recruitment of active Scar/WAVE to the cell edge, resulting in short-lived, unproductive protrusions. CYRI thus focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization. It thus behaves like a 'local inhibitor' as predicted in widely accepted mathematical models, but not previously identified in cells. CYRI therefore regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity and plasticity of protrusions.
Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pseudópodes/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Quimiotaxia/genética , Chlorocebus aethiops , Cães , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Madin Darby de Rim Canino , Polimerização , Ligação Proteica , Pseudópodes/genética , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.
Assuntos
Encéfalo/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Medula Espinal/embriologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Feminino , Hibridização In Situ , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Neurônios/química , Neurônios/metabolismo , Regiões Promotoras Genéticas , RNA Complementar/química , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Proteínas RoundaboutRESUMO
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.