Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 82(21): 4080-4098.e12, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36272410

RESUMO

Growing evidence suggests prevalence of transcriptional condensates on chromatin, yet their mechanisms of formation and functional significance remain largely unclear. In human cancer, a series of mutations in the histone acetylation reader ENL create gain-of-function mutants with increased transcriptional activation ability. Here, we show that these mutations, clustered in ENL's structured acetyl-reading YEATS domain, trigger aberrant condensates at native genomic targets through multivalent homotypic and heterotypic interactions. Mechanistically, mutation-induced structural changes in the YEATS domain, ENL's two disordered regions of opposing charges, and the incorporation of extrinsic elongation factors are all required for ENL condensate formation. Extensive mutagenesis establishes condensate formation as a driver of oncogenic gene activation. Furthermore, expression of ENL mutants beyond the endogenous level leads to non-functional condensates. Our findings provide new mechanistic and functional insights into cancer-associated condensates and support condensate dysregulation as an oncogenic mechanism.


Assuntos
Neoplasias , Corpos Nucleares , Humanos , Domínios Proteicos , Cromatina/genética , Mutação , Neoplasias/genética
2.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537449

RESUMO

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box , Histona-Lisina N-Metiltransferase , Histona Desmetilases com o Domínio Jumonji , Proteínas do Grupo Polycomb , Proteína SMARCB1 , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Células Tumorais Cultivadas/metabolismo
3.
Curr Opin Genet Dev ; 86: 102203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788489

RESUMO

Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.


Assuntos
Regulação da Expressão Gênica , Neoplasias , Transcrição Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Regulação da Expressão Gênica/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cancer Discov ; 14(8): 1522-1546, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38655899

RESUMO

Gain-of-function mutations in the histone acetylation "reader" eleven-nineteen-leukemia (ENL), found in acute myeloid leukemia (AML) and Wilms tumor, are known to drive condensate formation and gene activation in cellular systems. However, their role in tumorigenesis remains unclear. Using a conditional knock-in mouse model, we show that mutant ENL perturbs normal hematopoiesis, induces aberrant expansion of myeloid progenitors, and triggers rapid onset of aggressive AML. Mutant ENL alters developmental and inflammatory gene programs in part by remodeling histone modifications. Mutant ENL forms condensates in hematopoietic stem/progenitor cells at key leukemogenic genes, and disrupting condensate formation via mutagenesis impairs its chromatin and oncogenic function. Moreover, treatment with an acetyl-binding inhibitor of the mutant ENL displaces these condensates from target loci, inhibits mutant ENL-induced chromatin changes, and delays AML initiation and progression in vivo. Our study elucidates the function of ENL mutations in chromatin regulation and tumorigenesis and demonstrates the potential of targeting pathogenic condensates in cancer treatment. Significance: A direct link between ENL mutations, condensate formation, and tumorigenesis is lacking. This study elucidates the function and mechanism of ENL mutations in leukemogenesis, establishing these mutations as bona fide oncogenic drivers. Our results also support the role of condensate dysregulation in cancer and reveal strategies to target pathogenic condensates.


Assuntos
Mutação , Animais , Camundongos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Carcinogênese/genética , Humanos , Código das Histonas , Histonas/metabolismo
5.
Clin Cancer Res ; 26(18): 4995-5006, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631955

RESUMO

PURPOSE: Rhabdoid tumors are devastating pediatric cancers in need of improved therapies. We sought to identify small molecules that exhibit in vitro and in vivo efficacy against preclinical models of rhabdoid tumor. EXPERIMENTAL DESIGN: We screened eight rhabdoid tumor cell lines with 481 small molecules and compared their sensitivity with that of 879 other cancer cell lines. Genome-scale CRISPR-Cas9 inactivation screens in rhabdoid tumors were analyzed to confirm target vulnerabilities. Gene expression and CRISPR-Cas9 data were queried across cell lines and primary rhabdoid tumors to discover biomarkers of small-molecule sensitivity. Molecular correlates were validated by manipulating gene expression. Subcutaneous rhabdoid tumor xenografts were treated with the most effective drug to confirm in vitro results. RESULTS: Small-molecule screening identified the protein-translation inhibitor homoharringtonine (HHT), an FDA-approved treatment for chronic myelogenous leukemia (CML), as the sole drug to which all rhabdoid tumor cell lines were selectively sensitive. Validation studies confirmed the sensitivity of rhabdoid tumor to HHT was comparable with that of CML cell lines. Low expression of the antiapoptotic gene BCL2L1, which encodes Bcl-XL, was the strongest predictor of HHT sensitivity, and HHT treatment consistently depleted Mcl-1, the synthetic-lethal antiapoptotic partner of Bcl-XL. Rhabdoid tumor cell lines and primary-tumor samples expressed low BCL2L1, and overexpression of BCL2L1 induced resistance to HHT in rhabdoid tumor cells. Furthermore, HHT treatment inhibited rhabdoid tumor cell line and patient-derived xenograft growth in vivo. CONCLUSIONS: Rhabdoid tumor cell lines and xenografts are highly sensitive to HHT, at least partially due to their low expression of BCL2L1. HHT may have therapeutic potential against rhabdoid tumors.


Assuntos
Mepesuccinato de Omacetaxina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Tumor Rabdoide/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Mepesuccinato de Omacetaxina/uso terapêutico , Humanos , Camundongos , Tumor Rabdoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA