Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1160-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237067

RESUMO

An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.

2.
Nat Mater ; 22(7): 848-852, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37106132

RESUMO

Solid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.


Assuntos
Eletrólitos , Lítio , Fontes de Energia Elétrica , Engenharia , Software
3.
Chemphyschem ; 24(22): e202300477, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37632303

RESUMO

Sulfur vacancy on an MoS2 basal plane plays a crucial role in device performance and catalytic activity; thus, an understanding of the electronic states of sulfur vacancies is still an important issue. We investigate the electronic states on an MoS2 basal plane by ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and density functional theory calculations while heating the system in hydrogen. The AP-XPS results show a decrease in the intensity ratio of S 2p to Mo 3d, indicating that sulfur vacancies are formed. Furthermore, low-energy components are observed in Mo 3d and S 2p spectra. To understand the changes in the electronic states induced by sulfur vacancy formation at the atomic scale, we calculate the core-level binding energies for the model vacancy surfaces. The calculated shifts for Mo 3d and S 2p with the formation of sulfur vacancy are consistent with the experimentally observed binding energy shifts. Mulliken charge analysis indicates that this is caused by an increase in the electronic density associated with the Mo and S atoms around the sulfur vacancy as compared to the pristine surface. The present investigation provides a guideline for sulfur vacancy engineering.

4.
Phys Chem Chem Phys ; 25(22): 15531-15538, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249577

RESUMO

Two-dimensional hydrogen boride (HB) sheets prepared via the ion-exchange reaction from magnesium diboride (MgB2) are known to possess several intriguing properties for a wide range of applications; however, previous reports have shown that the sheets prepared using this method contain small amounts of reactive components, making them unsuitable for certain applications. Therefore, developing a method for preparing HB sheets that exhibit long-term stability and do not contain reactive species is essential. In this study, we developed an effective treatment method for achieving long-term stabilization of HB sheets. We found that by pre-treating the HB sheets with water and then filtering the dried product from an acetonitrile dispersion, we could achieve excellent long-term stability over nine months. This stability was maintained even outside of a glovebox, with no H2 released by the decomposition and/or reaction. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) absorption spectroscopy measurements revealed that the sample exhibited pure HB characteristics with negatively charged boron and B-H-B and terminal B-H bonds, even after nine months of storage. Furthermore, based on thermal desorption spectroscopy (TDS) measurements, the presence of reactive species in the as-prepared HB sheets is attributed to fluctuating B-H bonds with relatively weak binding energies that can be removed using the method developed in this study.

5.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770892

RESUMO

We have extensively searched for a cyclic hydrogenated boron molecule that has a three-center two-electron bond at the center. Using first-principles calculations, we discovered a stable molecule of 2:4:6:8:-2H-1,5:1,5-µH-B8H10 and propose its existence. This molecule can be regarded as a building block for sheets of topological hydrogen boride (borophane), which was recently theoretically proposed and experimentally discovered. The electronic structure of the cyclic hydrogenated boron molecule is discussed in comparison with that of cyclic hydrogenated carbon molecules.

6.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049748

RESUMO

We present an enhanced method for synthesizing sheets of borophane. Despite the challenges associated with low efficiency, we discovered that incorporating hydrochloric acid into the ion-exchange reaction significantly improved the production yield from 20% to over 50%. After a thorough examination of the reaction, we gained insight into the underlying mechanisms and found that the use of hydrochloric acid provides two key benefits: accelerated production of borophene and isolation of high-purity products. This method has the potential to pave the way for the production of novel topological 2D materials with potential industrial applications.

7.
Opt Express ; 30(15): 26220-26228, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236817

RESUMO

A soft X-ray ptychography system using a Wolter mirror for the illumination optics has been developed. By taking advantage of the achromaticity of the optics, the system is capable of seamlessly imaging at half-period resolution of 50 nm with a broad photon-energy range from 250 eV to 2 keV while maintaining the focal position. Imaging a mammalian cell at various wavelengths was demonstrated, and high-resolution visualization of organelle was achieved. Stereo imaging was also performed with a long working distance of 20 mm. In combination with in-situ/operando and tomographic measurements, this system will be a powerful tool for observing biological and material targets with complex features.


Assuntos
Iluminação , Óptica e Fotônica , Animais , Desenho de Equipamento , Mamíferos , Radiografia , Raios X
8.
Nano Lett ; 21(14): 6095-6101, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264679

RESUMO

The coexistence of ferroelectricity and metallicity seems paradoxical, since the itinerant electrons in metals should screen the long-range dipole interactions necessary for dipole ordering. The recent discovery of the polar metal LiOsO3 was therefore surprising [as discussed earlier in Y. Shi et al., Nat. Mater. 2013, 12, 1024]. It is thought that the coordination preferences of the Li play a key role in stabilizing the LiOsO3 polar metal phase, but an investigation from the combined viewpoints of core-state specificity and symmetry has yet to be done. Here, we apply the novel technique of extreme ultraviolet second harmonic generation (XUV-SHG) and find a sensitivity to the broken inversion symmetry in the polar metal phase of LiOsO3 with an enhanced feature above the Li K-edge that reflects the degree of Li atom displacement as corroborated by density functional theory calculations. These results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond time scales with element specificity.


Assuntos
Microscopia de Geração do Segundo Harmônico , Metais , Análise Espectral
9.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335171

RESUMO

The search for free-standing 2D materials has been one of the most important subjects in the field of studies on 2D materials and their applications. Recently, a free-standing monolayer of hydrogenated boron (HB) sheet has been synthesized by hydrogenation of borophene. The HB sheet is also called borophane, and its application is actively studied in many aspects. Here, we review recent studies on the electronic structures of polymorphic sheets of borophane. A hydrogenated boron sheet with a hexagonal boron frame was shown to have a semimetallic electronic structure by experimental and theoretical analyses. A tight-binding model that reproduces the electronic structure was given and it allows easy estimation of the properties of the material. Hydrogenated boron sheets with more complicated nonsymmorphic boron frames were also analyzed. Using the symmetry restrictions from the nonsymmorphic symmetry and the filling factor of hydrogenated boron sheets, the existence of a Dirac nodal line was suggested. These studies provide basic insights for research on and device applications of hydrogenated boron sheets.


Assuntos
Boro , Eletrônica , Boro/química , Humanos
10.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807464

RESUMO

We have investigated the structure of χ3-borophene on Ag(111), a monolayer material of boron atoms, via total-reflection high-energy positron diffraction (TRHEPD). By comparing the experimental rocking-curves with ones for several structures calculated by using dynamical diffraction theory, we confirmed that the χ3-borophene layer has a flat structure. The distance from the topmost layer of the metal crystal is 2.4 Å, which is consistent with results reported by X-ray standing wave-excited X-ray photoelectron spectroscopy. We also demonstrated that the in-plane structure of χ3-borophene is compatible with the theoretical predictions. These structural properties indicate that χ3-borophene belongs to a group of epitaxial monolayer sheets, such as graphene, which have weak interactions with the substrates.

11.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500350

RESUMO

Hydrogen boride (HB) sheets are two-dimensional materials comprising a negatively charged hexagonal boron network and positively charged hydrogen atoms with a stoichiometric ratio of 1:1. Herein, we report the spontaneous formation of highly dispersed Ni nanoclusters on HB sheets. The spontaneous reduction reaction of Ni ions by the HB sheets was monitored by in-situ measurements with an ultraviolet-visible spectrometer. Acetonitrile solutions of Ni complexes and acetonitrile dispersions of the HB sheets were mixed in several molar ratios (the HB:Ni molar ratio was varied from 100:0.5 to 100:20), and the changes in the absorbance were measured over time. In all cases, the results suggest that Ni metal clusters grow on the HB sheets, considering the increase in absorbance with time. The absorbance peak position shifts to the higher wavelength as the Ni ion concentration increases. Transmission electron microscopy images of the post-reaction products indicate the formation of Ni nanoclusters, with sizes of a few nanometers, on the HB sheets, regardless of the preparation conditions. These highly dispersed Ni nanoclusters supported on HB sheets will be used for catalytic and plasmonic applications and as hydrogen storage materials.


Assuntos
Hidrogênio , Catálise , Microscopia Eletrônica de Transmissão , Concentração de Íons de Hidrogênio
12.
Phys Rev Lett ; 127(23): 237402, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936786

RESUMO

Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry, as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is regularly used to investigate electronic and magnetic order through their angular anisotropies within the crystal structure. However, the increasing complexity of novel materials and emerging phenomena hampers the interpretation of experiments solely based on the investigation of hybridized valence states. Here, polarization-resolved SHG in the extreme ultraviolet (XUV-SHG) is demonstrated for the first time, enabling element-resolved angular anisotropy investigations. In noncentrosymmetric LiNbO_{3}, elemental contributions by lithium and niobium are clearly distinguished by energy dependent XUV-SHG measurements. This element-resolved and symmetry-sensitive experiment suggests that the displacement of Li ions in LiNbO_{3}, which is known to lead to ferroelectricity, is accompanied by distortions to the Nb ion environment that breaks the inversion symmetry of the NbO_{6} octahedron as well. Our simulations show that the measured second harmonic spectrum is consistent with Li ion displacements from the centrosymmetric position while the Nb─O bonds are elongated and contracted by displacements of the O atoms. In addition, the polarization-resolved measurement of XUV-SHG shows excellent agreement with numerical predictions based on dipole-induced SHG commonly used in the optical wavelengths. Our result constitutes the first verification of the dipole-based SHG model in the XUV regime. The findings of this work pave the way for future angle and time-resolved XUV-SHG studies with elemental specificity in condensed matter systems.

13.
Phys Chem Chem Phys ; 22(5): 2685-2692, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31641716

RESUMO

Hematite, α-Fe2O3, is an important semiconductor for photoelectrochemical water splitting. Its low charge carrier mobility and the presence of midgap states provide favourable conditions for electron-hole recombination, hence affecting the semiconductor's photoelectrochemical efficiency. The nature of the excited state and charge carrier transport in hematite is strongly debated. In order to further understand the fundamental properties of the hematite photoexcited state, we conducted femtosecond 2p (L3) X-ray absorption (XAS) and 2p3d resonant inelastic scattering (RIXS) measurements on hematite thin-films at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). The observed spectral changes and kinetic processes are in agreement with previous 3p XAS reports. The potential additional information that could be acquired from 2p3d RIXS experiments is also discussed.

14.
Phys Rev Lett ; 122(19): 196801, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144949

RESUMO

Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is (3×3)-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K^{'}) points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the (3×3)-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.

15.
Phys Chem Chem Phys ; 21(37): 20868-20877, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517357

RESUMO

The ceria-based catalyst incorporated with Cr and a trace amount of Rh (Cr0.19Rh0.06CeOz) was prepared and the reversible redox performances and oxidation catalysis of CO and alcohol derivatives with O2 at low temperatures (<373 K) were investigated. In situ X-ray absorption fine structure (XAFS), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)-EDS/EELS and temperature-programmed reduction/oxidation (TPR/TPO) revealed the structures and redox mechanisms of three metals in Cr0.19Rh0.06CeOz: dispersed Rh3+δ species (<1 nm) and Cr6-γO3-x nanoparticles (∼1 nm) supported on CeO2 in Cr0.19Rh0.06CeOz were transformed to Rh nanoclusters, Cr(OH)3 species and CeO2-x with two Ce3+-oxide layers at the surface in a concerted activation manner of the three metal species with H2.

16.
Langmuir ; 34(5): 2189-2197, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29359939

RESUMO

Hydrogen-bonding heterogeneous bilayers on substrates have been studied as a base for new functions of molecular adlayers by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), and density functional theory (DFT) calculations. Here, we report the formation of the catechol-fused bis(methylthio)tetrathiafulvalene (H2Cat-BMT-TTF) adlayer hydrogen bonding with an imidazole-terminated alkanethiolate self-assembled monolayer (Im-SAM) on Au(111). The heterogeneous bilayer is realized by sequential two-step immersions in solutions for the individual Im-SAM and H2Cat-BMT-TTF adlayer formations. In the measurements by AFM, a grained H2Cat-BMT-TTF adlayer on Im-SAM is revealed. The coverage and the chemical states of H2Cat-BMT-TTF on Im-SAM are specified by XPS. On the vibrational spectrum measured by IRAS, the strong hydrogen bonds between H2Cat-BMT-TTF and Im-SAM are characterized by the remarkably red-shifted OH stretching mode at 3140 cm-1, which is much lower than that for hydrogen-bonding water (typically ∼3300 cm-1). The OH stretching mode frequency and the adsorption strength for the H2Cat-BMT-TTF molecule hydrogen bonding with imidazole groups are quantitatively examined on the basis of DFT calculations.

17.
Phys Chem Chem Phys ; 20(29): 19532-19538, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29999069

RESUMO

The functionalization of graphene is important in practical applications of graphene, such as in catalysts. However, the experimental study of the interactions of adsorbed molecules with functionalized graphene is difficult under ambient conditions at which catalysts are operated. Here, the adsorption of CO2 on an oxygen-functionalized epitaxial graphene surface was studied under near-ambient conditions using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). The oxygen-functionalization of graphene is achieved in situ by the photo-induced dissociation of CO2 with X-rays on graphene in a CO2 gas atmosphere. The oxygen species on the graphene surface is identified as the epoxy group by XPS binding energies and thermal stability. Under near-ambient conditions of 1.6 mbar CO2 gas pressure and 175 K sample temperature, CO2 molecules are not adsorbed on the pristine graphene, but are adsorbed on the oxygen-functionalized graphene surface. The increase in the adsorption energy of CO2 on the oxygen-functionalized graphene surface is supported by first-principles calculations with the van der Waals density functional (vdW-DF) method. The adsorption of CO2 on the oxygen-functionalized graphene surface is enhanced by both the electrostatic interactions between the CO2 and the epoxy group and the vdW interactions between the CO2 and graphene. The detailed understanding of the interaction between CO2 and the oxygen-functionalized graphene surface obtained in this study may assist in developing guidelines for designing novel graphene-based catalysts.

18.
Phys Rev Lett ; 118(9): 096401, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306312

RESUMO

Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the ß_{12} sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the ß_{12} sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

19.
J Synchrotron Radiat ; 21(Pt 2): 352-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562556

RESUMO

A new soft X-ray beamline, BL07LSU, has been constructed at SPring-8 to perform advanced soft X-ray spectroscopy for materials science. The beamline is designed to achieve high energy resolution (E/ΔE> 10000) and high photon flux [>10(12) photons s(-1) (0.01% bandwidth)(-1)] in the photon energy range 250-2000 eV with controllable polarization. To realise this state-of-the-art performance, a novel segmented cross undulator was developed and adopted as a light source. The details of the undulator light source and beamline monochromator design are described. The achieved performance of the beamline, such as the photon flux, energy resolution and the state of polarization, is reported.

20.
Adv Mater ; 35(40): e2301347, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309900

RESUMO

Strong spin-charge interactions in several ferromagnets are expected to lead to subpicosecond (sub-ps) magnetization of the magnetic materials through control of the carrier characteristics via electrical means, which is essential for ultrafast spin-based electronic devices. Thus far, ultrafast control of magnetization has been realized by optically pumping a large number of carriers into the d or f orbitals of a ferromagnet; however, it is extremely challenging to implement by electrical gating. This work demonstrates a new method for sub-ps magnetization manipulation called wavefunction engineering, in which only the spatial distribution (wavefunction) of s (or p) electrons is controlled and no change is required in the total carrier density. Using a ferromagnetic semiconductor (FMS) (In,Fe)As quantum well (QW), instant enhancement, as fast as 600 fs, of the magnetization is observed upon irradiating a femtosecond (fs) laser pulse. Theoretical analysis shows that the instant enhancement of the magnetization is induced when the 2D electron wavefunctions (WFs) in the FMS QW are rapidly moved by a photo-Dember electric field formed by an asymmetric distribution of the photocarriers. Because this WF engineering method can be equivalently implemented by applying a gate electric field, these results open a new way to realize ultrafast magnetic storage and spin-based information processing in present electronic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA