Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104797, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156397

RESUMO

Coenzyme Q (CoQ) is an essential component of the electron transport system in aerobic organisms. CoQ10 has ten isoprene units in its quinone structure and is especially valuable as a food supplement. However, the CoQ biosynthetic pathway has not been fully elucidated, including synthesis of the p-hydroxybenzoic acid (PHB) precursor to form a quinone backbone. To identify the novel components of CoQ10 synthesis, we investigated CoQ10 production in 400 Schizosaccharomyces pombe gene-deleted strains in which individual mitochondrial proteins were lost. We found that deletion of coq11 (an S. cerevisiae COQ11 homolog) and a novel gene designated coq12 lowered CoQ levels to ∼4% of that of the WT strain. Addition of PHB or p-hydroxybenzaldehyde restored the CoQ content and growth and lowered hydrogen sulfide production of the Δcoq12 strain, but these compounds did not affect the Δcoq11 strain. The primary structure of Coq12 has a flavin reductase motif coupled with an NAD+ reductase domain. We determined that purified Coq12 protein from S. pombe displayed NAD+ reductase activity when incubated with ethanol-extracted substrate of S. pombe. Because purified Coq12 from Escherichia coli did not exhibit reductase activity under the same conditions, an extra protein is thought to be necessary for its activity. Analysis of Coq12-interacting proteins by LC-MS/MS revealed interactions with other Coq proteins, suggesting formation of a complex. Thus, our analysis indicates that Coq12 is required for PHB synthesis, and it has diverged among species.


Assuntos
NADH NADPH Oxirredutases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatografia Líquida , NAD/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Proteínas de Schizosaccharomyces pombe/metabolismo , Espectrometria de Massas em Tandem , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
2.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
3.
Curr Genet ; 69(2-3): 115-125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052630

RESUMO

The cAMP-dependent protein kinase (PKA) pathway in Schizosaccharomyces pombe plays an important role in microtubule organization and chromosome segregation. Typically, loss of functional Pka1 induces sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and chromosome mis-segregation. To determine the mechanism via which Pka1 is involved in these events, we explored the relevance of transcription factors by creating a double-deletion strain of pka1 and 102 individual genes encoding transcription factors. We found that rst2∆, tfs1∆, mca1∆, and moc3∆ suppressed the TBZ-sensitive phenotype of the pka1∆ strain, among which tfs1∆ was the strongest suppressor. All single mutants (rst2∆, tfs1∆, mca1∆, and moc3∆) showed a TBZ-tolerant phenotype. Tfs1 has two transcriptional domains (TFIIS and Zn finger domains), both of which contributed to the suppression of the pka1∆-induced TBZ-sensitive phenotype. pka1∆-induced chromosome mis-segregation was rescued by tfs1∆ in the presence of TBZ. tfs1 overexpression induced the TBZ-sensitive phenotype and a high frequency of chromosome mis-segregation, suggesting that the amount of Tfs1 must be strictly controlled. However, Tfs1-expression levels did not differ between the wild-type and pka1∆ strains, and the Tfs1-GFP protein was localized to the nucleus and cytoplasm in both strains, which excludes the direct regulation of expression and localization of Tfs1 by Pka1. Growth inhibition by TBZ in pka1∆ strains was notably rescued by double deletion of rst2 and tfs1 rather than single deletion of rst2 or tfs1, indicating that Rst2 and Tfs1 contribute independently to counteract TBZ toxicity. Our findings highlight Tfs1 as a key transcription factor for proper chromosome segregation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Segregação de Cromossomos/genética , Fatores de Alongamento de Peptídeos/genética
4.
Curr Genet ; 68(5-6): 661-674, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36112198

RESUMO

The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Pressão Osmótica , Lisofosfolipase/metabolismo , Glucose/metabolismo , Sorbitol/metabolismo , Fatores de Transcrição/metabolismo
5.
Curr Genet ; 67(5): 807-821, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34086083

RESUMO

The cAMP-dependent protein kinase (Pka1) regulates many cellular events, including sexual development and glycogenesis, and response to the limitation of glucose, in Schizosaccharomyces pombe. Despite its importance in many cellular events, the targets of the cAMP/PKA pathway have not been fully investigated. Here, we demonstrate that the expression of mug14 is induced by downregulation of the cAMP/PKA pathway and limitation of glucose. This regulation is dependent on the function of Rst2, a transcription factor that regulates transition from mitosis to meiosis. The loss of the C2H2-type zinc finger domain in Rst2, termed Rst2 (C2H2∆), abolished the induction of Mug14 expression. Upon deletion of the stress starvation response element of the S. pombe (STREP: CCCCTC) sequence, which is a potential binding site of Rst2 on mug14, in the pka1∆ strain, its induction was abolished. The expression of Mug14 was significantly reduced and delayed by the limitation of glucose and also by nitrogen starvation in the rst2∆ strain. Mug14 is known to share a common function with Mde1 and Mta3 in the methionine salvage pathway, but the expression of mde1 and mta3 mRNAs was not enhanced by pka1 deletion and limitation of glucose. We conclude that the expression of Mug14 is upregulated by Rst2 under the control of the cAMP/PKA signaling pathway, which senses the limitation of glucose.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fatores de Transcrição/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Sistema de Sinalização das MAP Quinases , Nitrogênio/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Fúngico , RNA Mensageiro , Proteínas Recombinantes de Fusão/genética , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Estresse Fisiológico
6.
Biosci Biotechnol Biochem ; 84(8): 1667-1680, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32441227

RESUMO

The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1-308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1-241) both resulted in more severe phenotypes than Mal3 (1-308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Glucose/deficiência , Cinesinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fuso Acromático/metabolismo , Substituição de Aminoácidos , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/deficiência , DNA Fúngico/genética , DNA Fúngico/metabolismo , Deleção de Genes , Glucose/farmacologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mutação , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura
7.
Appl Microbiol Biotechnol ; 103(12): 4899-4915, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030285

RESUMO

Coenzyme Q (CoQ) is an essential component of the electron transport system that produces ATP in nearly all living cells. CoQ10 is a popular commercial food supplement around the world, and demand for efficient production of this molecule has increased in recent years. In this study, we explored CoQ10 production in the fission yeast Schizosaccharomyces pombe. We found that CoQ10 level was higher in stationary phase than in log phase, and that it increased when the cells were grown in a low concentration of glucose, in maltose, or in glycerol/ethanol medium. Because glucose signaling is mediated by cAMP, we evaluated the involvement of this pathway in CoQ biosynthesis. Loss of Pka1, the catalytic subunit of cAMP-dependent protein kinase, increased production of CoQ10, whereas loss of the regulatory subunit Cgs1 decreased production. Manipulation of other components of the cAMP-signaling pathway affected CoQ10 production in a consistent manner. We also found that glycerol metabolism was controlled by the cAMP/PKA pathway. CoQ10 production by the S. pombe ∆pka1 reached 0.98 mg/g dry cell weight in medium containing a non-fermentable carbon source [2% glycerol (w/v) and 1% ethanol (w/v) supplemented with 0.5% casamino acids (w/v)], twofold higher than the production in wild-type cells under normal growth conditions. These findings demonstrate that carbon source, growth phase, and the cAMP-signaling pathway are important factors in CoQ10 production in S. pombe.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Glucose/química , Schizosaccharomyces/metabolismo , Ubiquinona/análogos & derivados , Domínio Catalítico , Meios de Cultura/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Maltose/química , Transdução de Sinais , Ubiquinona/biossíntese , Ubiquinona/metabolismo
8.
Biosci Biotechnol Biochem ; 82(2): 247-257, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29316864

RESUMO

In Schizosaccharomyces pombe, the transcription factor Rst2 regulates ste11 in meiosis and fbp1 in glucogenesis downstream of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) pathway. Here, we demonstrate that Rst2 regulates additional cellular events. Overexpressed Rst2 elevated the frequency of oval, bent, branched, septated, and multi-septated cells. Cells showed normal nuclear divisions but exhibited abnormal nuclear organization at low frequency. In oval cells, microtubules were curved but they were rescued by the deletion of mal3. Since growth defect was not rescued by mal3 deletion, we argue that it is regulated independently. Loss of functional Pka1 exaggerated growth defect upon Rst2 overexpression because its downregulation by Pka1 was lost. Overexpression of Rst2 also caused sensitivity to KCl and CaCl2. These findings suggest that, in addition to meiosis and glucogenesis, Rst2 is involved in cellular events such as regulation of cell growth, cell morphology, mitosis progression, microtubules structure, nuclear structure, and stress response.


Assuntos
Microtúbulos/metabolismo , Mitose/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinese/efeitos dos fármacos , Citocinese/genética , Expressão Gênica , Meiose/efeitos dos fármacos , Meiose/genética , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fenótipo , Sais/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Biosci Biotechnol Biochem ; 81(2): 231-241, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27756188

RESUMO

The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regulatory subunit of PKA, results in CaCl2 tolerance. Cytoplasmic distribution of Cgs1 and Pka1 is increased by the addition of CaCl2, suggesting that CaCl2 induces dissociation of Cgs1 and Pka1. The expression of Prz1, a transcriptional regulator in calcium homeostasis, is elevated in a pka1∆ strain and in a wild type strain under glucose-limited conditions. Accordingly, higher expression of Prz1 in the wild type strain results in a CaCl2-sensitive phenotype. These findings suggest that Pka1 is essential for tolerance to exogenous CaCl2, probably because the expression level of Prz1 needs to be properly regulated by Pka1.


Assuntos
Cloreto de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Homeostase/efeitos dos fármacos , Fenótipo , Transporte Proteico/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética
10.
Biosci Biotechnol Biochem ; 81(7): 1444-1451, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28345447

RESUMO

Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/efeitos dos fármacos , Ureia/toxicidade , Carbono-Nitrogênio Ligases/deficiência , Carbono-Nitrogênio Ligases/genética , Misturas Complexas/química , Misturas Complexas/farmacologia , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glucose/farmacologia , Peptonas/metabolismo , Peptonas/farmacologia , Saccharomyces cerevisiae/química , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA