Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 19(3): e1011155, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857394

RESUMO

RNA viruses can exchange genetic material during coinfection, an interaction that creates novel strains with implications for viral evolution and public health. Influenza A viral genetic exchange can occur when genome segments from distinct strains reassort in coinfected cells. Predicting potential genomic reassortment between influenza strains has been a long-standing goal. Experimental coinfection studies have shed light on factors that limit or promote reassortment. However, determining the reassortment potential between diverse Influenza A strains has remained elusive. To address this challenge, we developed a high throughput genotyping approach to quantify reassortment among a diverse panel of human influenza virus strains encompassing two pandemics (swine and avian origin), three specific epidemics, and both circulating human subtypes A/H1N1 and A/H3N2. We found that reassortment frequency (the proportion of reassortants generated) is an emergent property of specific pairs of strains where strain identity is a predictor of reassortment frequency. We detect little evidence that antigenic subtype drives reassortment as intersubtype (H1N1xH3N2) and intrasubtype reassortment frequencies were, on average, similar. Instead, our data suggest that certain strains bias the reassortment frequency up or down, independently of the coinfecting partner. We observe that viral productivity is also an emergent property of coinfections, but uncorrelated to reassortment frequency; thus viral productivity is a separate factor affecting the total number of reassortants produced. Assortment of individual segments among progeny and pairwise segment combinations within progeny generally favored homologous combinations. These outcomes were not related to strain similarity or shared subtype but reassortment frequency was closely correlated to the proportion of both unique genotypes and of progeny with heterologous pairwise segment combinations. We provide experimental evidence that viral genetic exchange is potentially an individual social trait subject to natural selection, which implies the propensity for reassortment is not evenly shared among strains. This study highlights the need for research incorporating diverse strains to discover the traits that shift the reassortment potential to realize the goal of predicting influenza virus evolution resulting from segment exchange.


Assuntos
Coinfecção , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Suínos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética
2.
J Evol Biol ; 36(11): 1551-1567, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975507

RESUMO

Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.


Assuntos
Viroses , Vírus , Humanos , Evolução Biológica , Vírus/genética , Genoma Viral , Evolução Molecular
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L281-L296, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700201

RESUMO

Supportive mechanical ventilation is a necessary lifesaving treatment for acute respiratory distress syndrome (ARDS). This intervention often leads to injury exacerbation by ventilator-induced lung injury (VILI). Patterns of injury in ARDS and VILI are recognized to be heterogeneous; however, quantification of these injury distributions remains incomplete. Developing a more detailed understanding of injury heterogeneity, particularly how it varies in space and time, can help elucidate the mechanisms of VILI pathogenesis. Ultimately, this knowledge can be used to develop protective ventilation strategies that slow disease progression. To expand existing knowledge of VILI heterogeneity, we document the spatial evolution of cellular injury distribution and leukocyte infiltration, on the micro- and macroscales, during protective and injurious mechanical ventilation. We ventilated naïve mice using either high inspiratory pressure and zero positive end-expiratory pressure ventilation or low tidal volume with positive end-expiratory pressure. Distributions of cellular injury, identified with propidium iodide staining, were microscopically analyzed at three levels of injury severity. Cellular injury initiated in diffuse, quasi-random patterns, and progressed through expansion of high-density regions of injured cells termed "injury clusters." The density profile of the expanding injury regions suggests that stress shielding occurs, protecting the already injured regions from further damage. Spatial distribution of leukocytes did not correlate with that of cellular injury or ventilation-induced changes in lung function. These results suggest that protective ventilation protocols should protect the interface between healthy and injured regions to stymie injury propagation.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Leucócitos , Camundongos , Respiração com Pressão Positiva/métodos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
Nanomedicine ; 34: 102388, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753282

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating pulmonary disease with significant in-hospital mortality and is the leading cause of death in COVID-19 patients. Excessive leukocyte recruitment, unregulated inflammation, and resultant fibrosis contribute to poor ARDS outcomes. Nanoparticle technology with cerium oxide nanoparticles (CNP) offers a mechanism by which unstable therapeutics such as the anti-inflammatory microRNA-146a can be locally delivered to the injured lung without systemic uptake. In this study, we evaluated the potential of the radical scavenging CNP conjugated to microRNA-146a (termed CNP-miR146a) in preventing acute lung injury (ALI) following exposure to bleomycin. We have found that intratracheal delivery of CNP-miR146a increases pulmonary levels of miR146a without systemic increases, and prevents ALI by altering leukocyte recruitment, reducing inflammation and oxidative stress, and decreasing collagen deposition, ultimately improving pulmonary biomechanics.


Assuntos
Bleomicina/efeitos adversos , Cério , Sistemas de Liberação de Medicamentos , MicroRNAs , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Bleomicina/farmacologia , COVID-19/genética , COVID-19/metabolismo , Cério/química , Cério/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , MicroRNAs/química , MicroRNAs/farmacologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
5.
Ann Biomed Eng ; 51(12): 2837-2852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592044

RESUMO

Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its progression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdependence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils is likely due to longer-range cell signaling pathways.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão/metabolismo , Infiltração de Neutrófilos , Respiração Artificial
6.
Front Physiol ; 11: 614283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519519

RESUMO

Perinatal inflammation due to chorioamnionitis and ventilator-induced lung injury (VILI) at birth is independent risk factors for the development of bronchopulmonary dysplasia (BPD). We have previously shown that antenatal endotoxin (ETX) causes abnormal lung structure and function in 2-week-old rats, but whether ETX impairs lung mechanics at birth and increases risk for VILI is unknown. Fetal rats were exposed to 10 µg endotoxin or saline via intra-amniotic injection. At birth (D0) or 7 days (D7), rats received 90 min of lung protective ventilation [PROTECT group; tidal volume (Vt) = 6 ml/kg with positive end expiratory pressure (PEEP) = 2 cmH2O]; P20 ventilation [plateau pressure (Pplat) = 20 cmH2O, PEEP = 0]; or P24 ventilation (Pplat = 24 cmH2O, PEEP = 0, only applied to D7). Prior to prolonged ventilation at D0, endotoxin-exposed rats had decreased compliance and inspiratory capacity (IC) compared to controls. At D7, endotoxin was associated with reduced compliance. High-pressure ventilation (P20 and P24) tended to increase IC and compliance in all saline-treated groups. Ventilation at D0 with P20 increased IC and compliance when applied to saline-treated but not endotoxin-exposed pups. At D7, P24 ventilation of endotoxin-exposed pups increased elastance, bronchoalveolar lavage protein content, and IL-1b and TEN-C mRNA expression in comparison to the saline group. In summary, antenatal endotoxin exposure alters lung mechanics at birth and 1 week of life and increases susceptibility to VILI as observed in lung mechanics, alveolocapillary barrier injury, and inflammatory mRNA expression. We speculate that antenatal inflammation primes the lung for a more marked VILI response, suggesting an adverse synergistic effect of antenatal and postnatal exposures.

7.
Front Physiol ; 11: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695013

RESUMO

Mechanical ventilation is an essential lifesaving therapy in acute respiratory distress syndrome (ARDS) that may cause ventilator-induced lung injury (VILI) through a positive feedback between altered alveolar mechanics, edema, surfactant inactivation, and injury. Although the biophysical forces that cause VILI are well documented, a knowledge gap remains in the quantitative link between altered parenchymal structure (namely alveolar derecruitment and flooding), pulmonary function, and VILI. This information is essential to developing diagnostic criteria and ventilation strategies to reduce VILI and improve ARDS survival. To address this unmet need, we mechanically ventilated mice to cause VILI. Lung structure was measured at three air inflation pressures using design-based stereology, and the mechanical function of the pulmonary system was measured with the forced oscillation technique. Assessment of the pulmonary surfactant included total surfactant, distribution of phospholipid aggregates, and surface tension lowering activity. VILI-induced changes in the surfactant included reduced surface tension lowering activity in the typically functional fraction of large phospholipid aggregates and a significant increase in the pool of surface-inactive small phospholipid aggregates. The dominant alterations in lung structure at low airway pressures were alveolar collapse and flooding. At higher airway pressures, alveolar collapse was mitigated and the flooded alveoli remained filled with proteinaceous edema. The loss of ventilated alveoli resulted in decreased alveolar gas volume and gas-exchange surface area. These data characterize three alveolar phenotypes in murine VILI: flooded and non-recruitable alveoli, unstable alveoli that derecruit at airway pressures below 5 cmH2O, and alveoli with relatively normal structure and function. The fraction of alveoli with each phenotype is reflected in the proportional changes in pulmonary system elastance at positive end expiratory pressures of 0, 3, and 6 cmH2O.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30533665

RESUMO

Six double-stranded DNA Streptomyces bacteriophages, HotFries, Moozy, RavenPuff, Scap1, Rainydai, and SenditCS, were isolated using the phytopathogen Streptomyces scabiei as a host. These phages have been identified as Siphoviridae and members of cluster BI by genomic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA