Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 145(3): 206-218, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34913723

RESUMO

BACKGROUND: Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS: A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS: Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS: Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.


Assuntos
Aterosclerose/terapia , Doenças Cardiovasculares/terapia , Células Espumosas/citologia , Macrófagos/citologia , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/etiologia , Aterosclerose/genética , Doenças Cardiovasculares/complicações , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/complicações , Placa Aterosclerótica/genética , Placa Aterosclerótica/terapia , Curva ROC , Risco , Calcificação Vascular/complicações , Calcificação Vascular/genética , Calcificação Vascular/terapia
2.
Front Immunol ; 14: 1148188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875144

RESUMO

Adipose tissue macrophages (ATMs) bolster obesity-induced metabolic dysfunction and represent a targetable population to lessen obesity-associated health risks. However, ATMs also facilitate adipose tissue function through multiple actions, including adipocyte clearance, lipid scavenging and metabolism, extracellular remodeling, and supporting angiogenesis and adipogenesis. Thus, high-resolution methods are needed to capture macrophages' dynamic and multifaceted functions in adipose tissue. Herein, we review current knowledge on regulatory networks critical to macrophage plasticity and their multifaceted response in the complex adipose tissue microenvironment.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Adipogenia , Macrófagos , Obesidade
3.
Immunometabolism (Cobham) ; 4(3): e00005, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966635

RESUMO

Obesity is a prevalent health risk by inducing chronic, low-grade inflammation and insulin resistance, in part from adipose tissue inflammation perpetuated by activated B cells and other resident immune cells. However, regulatory mechanisms controlling B-cell actions in adipose tissue remain poorly understood, limiting therapeutic innovations. MicroRNAs are potent regulators of immune cell dynamics through fine-tuning a network of downstream genes in multiple signaling pathways. In particular, miR-150 is crucial to B-cell development and suppresses obesity-associated inflammation via regulating adipose tissue B-cell function. Herein, we review the effect of microRNAs on B-cell development, activation, and function and highlight miR-150-regulated B-cell actions during obesity which modulate systemic inflammation and insulin resistance. In this way, we hope to promote translational discoveries that mitigate obesity-induced health risks by targeting microRNA-regulated B-cell actions.

4.
J Leukoc Biol ; 112(6): 1535-1542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726704

RESUMO

Macrophages are widely distributed immune cells that play central roles in a variety of physiologic and pathologic processes, including obesity and cardiovascular disease (CVD). They are highly plastic cells that execute diverse functions according to a combination of signaling and environmental cues. While macrophages have traditionally been understood to polarize to either proinflammatory M1-like or anti-inflammatory M2-like states, evidence has shown that they exist in a spectrum of states between those 2 phenotypic extremes. In obesity-related disease, M1-like macrophages exacerbate inflammation and promote insulin resistance, while M2-like macrophages reduce inflammation, promoting insulin sensitivity. However, polarization markers are expressed inconsistently in adipose tissue macrophages, and they additionally exhibit phenotypes differing from the M1/M2 paradigm. In atherosclerotic CVD, activated plaque macrophages can also exist in a range of proinflammatory or anti-inflammatory states. Some of these macrophages scavenge lipids, developing into heterogeneous foam cell populations. To better characterize the many actions of macrophages in human disease, we have designed a novel set of computational tools: MacSpectrum and AtheroSpectrum. These tools provide information on the inflammatory polarization status, differentiation, and foaming of macrophages in both human and mouse samples, allowing for better characterization of macrophage subpopulations based on their function. Using these tools, we identified disease-relevant cell states in obesity and CVD, including the novel concept that macrophage-derived foam cell formation can follow homeostatic noninflammatory or pathogenic inflammatory foaming programs.


Assuntos
Aterosclerose , Resistência à Insulina , Humanos , Camundongos , Animais , Macrófagos , Inflamação/patologia , Obesidade , Anti-Inflamatórios
5.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360310

RESUMO

Macrophages are central players in systemic inflammation associated with obesity and aging, termed meta-inflammation and inflammaging. Activities of macrophages elicited by the two chronic conditions display shared and distinct patterns mechanistically, resulting in multifaceted actions for their pathogenic roles. Drastically expanded tissue macrophage populations under obesity and aging stress attribute to both enhanced recruitment and local expansion. Importantly, molecular networks governing the multifaceted actions of macrophages are directly altered by environmental cues and subsequently contribute to metabolic reprogramming, resulting in meta-inflammation in obesity or inflammaging in aging. In this review, we will summarize how meta-inflammation and inflammaging affect macrophages and the molecular mechanisms involved in these processes.


Assuntos
Inflamação , Macrófagos , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Envelhecimento/genética , Obesidade/genética , Obesidade/metabolismo , Contagem de Leucócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA