Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585087

RESUMO

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Assuntos
Carcinogênese/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animais , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
2.
Circulation ; 145(19): 1480-1496, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35491884

RESUMO

BACKGROUND: Exercise training, and catecholaminergic stimulation, increase the incidence of arrhythmic events in patients affected with arrhythmogenic right ventricular cardiomyopathy correlated with plakophilin-2 (PKP2) mutations. Separate data show that reduced abundance of PKP2 leads to dysregulation of intracellular Ca2+ (Ca2+i) homeostasis. Here, we study the relation between excercise, catecholaminergic stimulation, Ca2+i homeostasis, and arrhythmogenesis in PKP2-deficient murine hearts. METHODS: Experiments were performed in myocytes from a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout murine line (PKP2cKO). For training, mice underwent 75 minutes of treadmill running once per day, 5 days each week for 6 weeks. We used multiple approaches including imaging, high-resolution mass spectrometry, electrocardiography, and pharmacological challenges to study the functional properties of cells/hearts in vitro and in vivo. RESULTS: In myocytes from PKP2cKO animals, training increased sarcoplasmic reticulum Ca2+ load, increased the frequency and amplitude of spontaneous ryanodine receptor (ryanodine receptor 2)-mediated Ca2+ release events (sparks), and changed the time course of sarcomeric shortening. Phosphoproteomics analysis revealed that training led to hyperphosphorylation of phospholamban in residues 16 and 17, suggesting a catecholaminergic component. Isoproterenol-induced increase in Ca2+i transient amplitude showed a differential response to ß-adrenergic blockade that depended on the purported ability of the blockers to reach intracellular receptors. Additional experiments showed significant reduction of isoproterenol-induced Ca2+i sparks and ventricular arrhythmias in PKP2cKO hearts exposed to an experimental blocker of ryanodine receptor 2 channels. CONCLUSIONS: Exercise disproportionately affects Ca2+i homeostasis in PKP2-deficient hearts in a manner facilitated by stimulation of intracellular ß-adrenergic receptors and hyperphosphorylation of phospholamban. These cellular changes create a proarrhythmogenic state that can be mitigated by ryanodine receptor 2 blockade. Our data unveil an arrhythmogenic mechanism for exercise-induced or catecholaminergic life-threatening arrhythmias in the setting of PKP2 deficit. We suggest that membrane-permeable ß-blockers are potentially more efficient for patients with arrhythmogenic right ventricular cardiomyopathy, highlight the potential for ryanodine receptor 2 channel blockers as treatment for the control of heart rhythm in the population at risk, and propose that PKP2-dependent and phospholamban-dependent arrhythmogenic right ventricular cardiomyopathy-related arrhythmias have a common mechanism.


Assuntos
Displasia Arritmogênica Ventricular Direita , Placofilinas , Retículo Sarcoplasmático , Animais , Arritmias Cardíacas , Displasia Arritmogênica Ventricular Direita/genética , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal/efeitos adversos , Placofilinas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Eur Heart J ; 43(17): 1668-1680, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245370

RESUMO

AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-ß signalling molecules and spectrin ß. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.


Assuntos
Prolapso da Valva Mitral , Adulto , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Prolapso da Valva Mitral/genética , Proteômica , Fatores de Risco
4.
Circulation ; 140(12): 1015-1030, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315456

RESUMO

BACKGROUND: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. METHODS: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. RESULTS: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+]i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. CONCLUSIONS: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.


Assuntos
Displasia Arritmogênica Ventricular Direita/metabolismo , Conexina 43/metabolismo , Desmossomos/metabolismo , Miócitos Cardíacos/fisiologia , Placofilinas/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Placofilinas/genética
5.
J Bacteriol ; 193(22): 6142-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926233

RESUMO

cspE, a member of the cspA family of cold shock proteins in Escherichia coli, is an early cold-inducible protein. The nucleic acid melting ability and transcription antiterminator activity of CspE have been reported to be critical for growth at low temperature. Here, we show that the cyclic AMP receptor protein (CRP), a global regulator involved in sugar metabolism, upregulates cspE in E. coli. Sequence analysis of the cspE upstream region revealed a putative CRP target site centered at -61.5 relative to the transcription start. The binding of CRP to this target site was demonstrated using electrophoretic mobility shift assays. The presence of this site was shown to be essential for P(cspE) activation by CRP. Mutational analysis of the binding site indicated that the presence of an intact second core motif is more important than the first core motif for CRP-P(cspE) interaction. Based on the promoter architecture, we classified P(cspE) as a class I CRP-dependent promoter. This was further substantiated by our data demonstrating the involvement of the AR1 domain of CRP in P(cspE) transcription. Furthermore, the substitutions in the key residues of the RNA polymerase α-subunit C-terminal domain (α-CTD), which are important for class I CRP-dependent transcription, showed the involvement of 265 and 287 determinants in P(cspE) transcription. In addition, the deletion of crp led to a growth defect at low temperature, suggesting that CRP plays an important role in cold adaptation.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Sequência de Bases , Sítios de Ligação , Temperatura Baixa , Proteína Receptora de AMP Cíclico/genética , Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA