Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurosci Res ; 182: 32-40, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35710035

RESUMO

The brain synaptic circuitry is formed as a result of pre-defined genetic programs and sensory experience during postnatal development. Perineuronal nets ensheath synaptic boutons and control several crucial features of the synapse physiology. Formation of the perineuronal net microstructure during the brain development remains largely unstudied. Here we provide a detailed quantitative description of the 3-dimensional geometry of the synapse and the surrounding perineuronal net in the mouse somatosensory cortex layer IV. We compare the morphology of the synapse+perineuronal net complex in the adult brain formed under normal conditions or in the whisker shaving model of somatosensory deprivation. We demonstrate that the sensory deprivation causes flattening of the 3D PNN mesh geometry and reduction of the VGAT-positive cluster volume in presynaptic boutons. These results reveal a mechanism of the sensory input-dependent synapse morphogenesis during the brain development.


Assuntos
Matriz Extracelular , Sinapses , Animais , Matriz Extracelular/fisiologia , Camundongos , Privação Sensorial/fisiologia , Córtex Somatossensorial , Vibrissas
2.
J Neuromuscul Dis ; 8(2): 273-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33337382

RESUMO

A family of five male siblings (three survivors at 48, 53 and 58 years old; two deceased at 8 months old and 2.5 years old) demonstrating significant phenotypic variability ranging from intermediate to the myosclerotic like Bethlem myopathy is presented. Whole-exome sequencing (WES) identified a new homozygous missense mutation chr21:47402679 T > C in the canonical splice donor site of the second intron (c.227 + 2T>C) in the COL6A1 gene. mRNA analysis confirmed skipping of exon 2 encoding 925 amino-acids in 94-95% of resulting transcripts. Three sibs presented with intermediate phenotype of collagen VI-related dystrophies (48, 53 and 2.5 years old) while the fourth sibling (58 years old) was classified as Bethlem myopathy with spine rigidity. The two older siblings with the moderate progressive phenotype (48 and 53 years old) lost their ability to maintain a vertical posture caused by pronounced contractures of large joints, but continued to ambulate throughout life on fully bent legs without auxiliary means of support. Immunofluorescence analysis of dermal fibroblasts demonstrated that no type VI collagen was secreted in any of the siblings' cells, regardless of clinical manifestations severity while fibroblast proliferation and colony formation ability was decreased. The detailed genetic and long term clinical data contribute to broadening the genotypic and phenotypic spectrum of COL6A1 related disease.


Assuntos
Colágeno Tipo VI , Contratura/genética , Distrofias Musculares/congênito , Variação Biológica da População , Éxons , Genótipo , Humanos , Lactente , Íntrons , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo
3.
J Mol Histol ; 50(3): 203-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903543

RESUMO

Perineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28. The single cell PNN size and the chondroitin sulfate intensity were quantified for all cortex layers and specifically for the cortical layer IV which has the highest density of PNN-positive neurons. We demonstrate that the chondroitin sulfate proteoglycan staining intensity is increased between P14 and P28 while the PNN size remains unchanged. We then addressed posttraumatic changes of the PNN expression in laminae 6 and 7 of cervical spinal cord following hemisection injury. We demonstrate increase of the chondroitin sulfate content at 1.6-1.8 mm rostrally from the injury site and increase of the density of PNN-bearing cells at 0.4-1.2 mm caudally from the injury site. We further demonstrate decrease of the single cell PNN area at 0.2 mm caudally from the injury site suggesting that the PNN ECM takes part in the posttraumatic tissue rearrangement in the spinal cord. Our results demonstrate new insights on the PNN structure dynamics in the developing and posttraumatic CNS.


Assuntos
Encéfalo/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Animais , Encéfalo/patologia , Matriz Extracelular/metabolismo , Camundongos , Neurônios/patologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Receptores de N-Acetilglucosamina/química , Medula Espinal/metabolismo , Medula Espinal/patologia
4.
Clin J Gastroenterol ; 12(2): 106-111, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30343465

RESUMO

Herein we present a clinical case of the Caroli syndrome caused by the compound heterozygous mutation in the PKHD1 gene. Histopathological assessment of liver detected biliary cirrhosis, numerous dilated bile ducts of various sizes, hyperplastic cholangiocytes containing a large amount of acid mucopolysaccharides, decreased ß-tubulin expression and increased proliferation of cholangiocytes. A significant proportion of hepatic tissue was composed of giant cysts lined with a single layer of cholangiocytes, containing pus and bile in its lumen and surrounded by granulation tissue. An accumulation of neutrophils in the lumen of the bile ducts was observed, as well as an infiltration of the ducts and cysts surrounding connective tissue by CD4+ and to a lesser extent CD8+ lymphocytes. This may be caused by the expression of HLA-DR by cholangiocytes. Atrophy and desquamation of the epithelium of collecting tubules with the formation of microcysts were detected in the kidneys without a clinically significant loss of renal function. Morphopathogenetic mechanisms of the Caroli syndrome can be targets for a potential pathogenetic therapy and prevention of its manifestations and complications.


Assuntos
Doença de Caroli/patologia , Adulto , Atrofia , Ductos Biliares Intra-Hepáticos/patologia , Doença de Caroli/genética , Dilatação Patológica , Epitélio/patologia , Humanos , Túbulos Renais/patologia , Fígado/patologia , Masculino , Mutação de Sentido Incorreto , Receptores de Superfície Celular/genética
5.
J Biomed Mater Res B Appl Biomater ; 107(2): 253-268, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29603873

RESUMO

Artificial tissue-engineered grafts offer a potential alternative to autologous tissue grafts for patients, which can be traumatic. After decellularizing Papio hamadryas esophagus and studying the morphology and physical properties of the extracellular matrix (ECM), we generated electrospun polyamide-6 based scaffolds to mimic it. The scaffolds supported a greater mechanical load than the native ECM and demonstrated similar 3D microstructure, with randomly aligned fibers, 90% porosity, 29 µm maximal pore size, and average fiber diameter of 2.87 ± 0.95 µm. Biocompatibility studies showed that human adipose- and bone marrow-derived mesenchymal stromal cells (AD-MSC and BMD-MSC) adhered to the scaffold surface and showed some proliferation: scaffold cell coverage was 25% after 72 h of incubation when seeded with 1000 cells/mm2 ; cells elongated processes along the polyamide-6, although they flattened 1.67-4 times less than on cell culture plastic. Human umbilical vein endothelial cells, however, showed poor adherence and proliferation. We thus provide in vitro evidence that polyamide-6 scaffolds approximating the esophageal biomechanics and 3D topography of nonhuman primates may provide a biocompatible substrate for both AD-MSC and BMD-MSCs, supporting their adhesion and survival to some degree. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 253-268, 2019.


Assuntos
Caprolactama/análogos & derivados , Esôfago/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Caprolactama/química , Esôfago/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Papio hamadryas
6.
Case Rep Med ; 2017: 3615354, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487742

RESUMO

Limb-girdle muscular dystrophy type 2 (LGMD2B) is a mild form of dysferlinopathy, characterized by limb weakness and wasting. It is an autosomal recessive disease, with currently 140 mutations in the LGMD2B gene identified. Lack of functional dysferlin inhibits muscle fiber regeneration in voluntary muscles, the main pathological finding in LGMD2B patients. However, the immune system has been suggested to contribute to muscle cell death and tissue regeneration. Serum levels of 27 cytokines were evaluated in a dysferlinopathy patient. Levels of 8 cytokines differed in patient serum compared to controls. Five cytokines (IL-10, IL-17, CCL2, CXCL10, and G-CSF) were higher while 3 were lower in the patient than in controls (IL-2, IL-8, and CCL11). Together, these data on serum cytokine profile of this dysferlinopathy patient suggest immune response activation, which could explain leukocyte infiltration in the muscle tissue.

7.
Front Neurol ; 8: 77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337173

RESUMO

To date, over 30 genes with mutations causing limb-girdle muscle dystrophy have been described. Dysferlinopathies are a form of limb-girdle muscle dystrophy type 2B with an incidence ranging from 1:1,300 to 1:200,000 in different populations. In 1996, Dr. S. N. Illarioshkin described a family from the Botlikhsky district of Dagestan, where limb-girdle muscle dystrophy type 2B and Miyoshi myopathy were diagnosed in 12 members from three generations of a large Avar family. In 2000, a previously undescribed mutation in the DYSF gene (c.TG573/574AT; p. Val67Asp) was detected in the affected members of this family. Twenty years later, in this work, we re-examine five known and seven newly affected family members previously diagnosed with dysferlinopathy. We observed disease progression in family members who were previously diagnosed and noted obvious clinical polymorphism of the disease. A typical clinical case is provided.

9.
Front Neurol ; 8: 367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824526

RESUMO

Plectinopathies are orphan diseases caused by PLEC gene mutations. PLEC is encoding the protein plectin, playing a role in linking cytoskeleton components in various tissues. In this study, we describe the clinical case of a 26-year-old patient with an early onset plectinopathy variant "limb-girdle muscle dystrophy type 2Q," report histopathological and ultrastructural findings in m. vastus lateralis biopsy and a novel homozygous likely pathogenic variant (NM_201378.3:c.58G>T, NP_958780.1:p.Glu20Ter) in isoform 1f of the gene PLEC. The patient had an early childhood onset with retarded physical development, moderate weakness in pelvic girdle muscles, progressive weakening of limb-girdle muscles after the age of 21, pronounced atrophy of axial muscles, and hypertrophy of the gastrocnemius, deltoid, and triceps muscles, intermittent dyspnea, and no skin involvement. Findings included: non-infectious bronchiolitis and atelectasis signs, biopsy revealed myodystrophal pattern without macrophage infiltration, muscle fiber cytoskeleton disorganization resulted from the plectin loss, incomplete reparative rhabdomyogenesis, and moderate endomysial fibrosis. We have determined a novel likely pathogenic variant in PLEC 1f isoform that causes limb-girdle muscle dystrophy type 2Q and described the third case concerning an isolated myodystrophic phenotype of LGMD2Q with the likely pathogenic variant in PLEC 1f isoform. In addition, we have demonstrated the presence of severe lung injury in a patient and his siblings with the same myodystrophic phenotype and discussed the possible role of plectin deficiency in its pathogenesis.

10.
Brain Res ; 1648(Pt A): 214-223, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425428

RESUMO

Perineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex. Vast majority of meshes have quadrangle, pentagon or hexagon shape with mean mesh area of 1.29µm(2) in mouse and 1.44µm(2) in rat neurons. We demonstrate two distinct patterns of chondroitin sulfate distribution within a single mesh - with uniform (nonpolar) and node-enriched (polar) distribution of the Wisteria floribunda agglutinin-positive signal. Vertices of the node-enriched pattern match better with local maxima of chondroitin sulfate density as compared to the uniform pattern. PNN is organized into clusters of meshes with distinct morphologies on the neuronal cell surface. Our findings suggest the role for the PNN microstructure in the synaptic transduction and plasticity.


Assuntos
Rede Nervosa/citologia , Neurônios/citologia , Córtex Somatossensorial/citologia , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Rede Nervosa/metabolismo , Neurônios/metabolismo , Lectinas de Plantas/metabolismo , Ratos , Receptores de N-Acetilglucosamina/metabolismo , Córtex Somatossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA