Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Bioinformatics ; 32(13): 2065-6, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153692

RESUMO

UNLABELLED: Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. AVAILABILITY AND IMPLEMENTATION: This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder CONTACT: : asad@ebi.ac.uk or s9asad@gmail.com.


Assuntos
Bioquímica/métodos , Biologia Computacional/métodos , Redes e Vias Metabólicas , Software , Mineração de Dados , Bases de Dados de Compostos Químicos
2.
Bioinformatics ; 29(17): 2213-5, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23766418

RESUMO

UNLABELLED: Genome-scale metabolic models often lack annotations that would allow them to be used for further analysis. Previous efforts have focused on associating metabolites in the model with a cross reference, but this can be problematic if the reference is not freely available, multiple resources are used or the metabolite is added from a literature review. Associating each metabolite with chemical structure provides unambiguous identification of the components and a more detailed view of the metabolism. We have developed an open-source desktop application that simplifies the process of adding database cross references and chemical structures to genome-scale metabolic models. Annotated models can be exported to the Systems Biology Markup Language open interchange format. AVAILABILITY: Source code, binaries, documentation and tutorials are freely available at http://johnmay.github.com/metingear. The application is implemented in Java with bundles available for MS Windows and Macintosh OS X.


Assuntos
Metabolismo , Modelos Biológicos , Software , Bases de Dados Factuais , Genoma , Biologia de Sistemas/métodos
3.
PLoS Pathog ; 7(2): e1001299, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383969

RESUMO

The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT)) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT) contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT), linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.


Assuntos
Galactanos/metabolismo , Lectinas/metabolismo , Lipopolissacarídeos/metabolismo , Mycobacterium tuberculosis/enzimologia , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/genética , Pentosiltransferases/genética , Conformação Proteica
4.
J Cheminform ; 6(1): 3, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24479757

RESUMO

BACKGROUND: The Chemistry Development Kit (CDK) is an open source Java library for manipulating and processing chemical information. A key aspect in handling chemical structures is the determination of the chemical rings. The rings of a structure are used areas including descriptors, stereochemistry, similarity, screening and atom typing. The CDK includes multiple algorithms for determining the rings of a structure on demand. Non-unique descriptions of rings were often used due to the slower performance of the unique alternatives. RESULTS: Efficient algorithms for handling chemical ring perception have been implemented and optimised in the CDK. The algorithms provide much faster computation of new and existing types of rings. Several optimisation and implementation considerations are discussed which improve real case usage. The performance is measured on several publicly available data sets and in several cases the new implementations were found to be more than an order of magnitude faster. CONCLUSIONS: Algorithmic improvements allow handling of much larger datasets in reasonable time. Faster computation allows more appropriate rings to be utilised in procedures such as aromaticity. Several areas that require ring perception have also seen a noticeable improvement. The time taken to compute the unique rings is now comparable allowing a correct usage throughout the toolkit. All source code is open source and freely available.

5.
Appl Environ Microbiol ; 73(7): 2257-70, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17293509

RESUMO

All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter(-1) to less than 0.1 mg P liter(-1) (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-beta-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that "Candidatus Accumulibacter phosphatis" bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated acetate and contained intracellular PHA during the feed stages, they never accumulated poly(P) during the cycles, consistent with the phenotype of glycogen-accumulating organisms.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Ecologia , Fosfatos/metabolismo , Eliminação de Resíduos Líquidos , Microbiologia da Água , Aerobiose , Sequência de Bases , Betaproteobacteria/metabolismo , Eletroforese em Gel de Campo Pulsado , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA