Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Struct Biol ; 208(1): 18-29, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301349

RESUMO

VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína
2.
J Bacteriol ; 198(12): 1712-24, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044623

RESUMO

UNLABELLED: The genome of an invasive skin-tropic strain (AP53) of serotype M53 group A Streptococcus pyogenes (GAS) is composed of a circular chromosome of 1,860,554 bp and carries genetic markers for infection at skin locales, viz, emm gene family pattern D and FCT type 3. Through genome-scale comparisons of AP53 with other GAS genomes, we identified 596 candidate single-nucleotide polymorphisms (SNPs) that reveal a potential genetic basis for skin tropism. The genome of AP53 differed by ∼30 point mutations from a noninvasive pattern D serotype M53 strain (Alab49), 4 of which are located in virulence genes. One pseudogene, yielding an inactive sensor kinase (CovS(-)) of the two-component transcriptional regulator CovRS, a major determinant for invasiveness, severely attenuated the expression of the secreted cysteine protease SpeB and enhanced the expression of the hyaluronic acid capsule compared to the isogenic noninvasive AP53/CovS(+) strain. The collagen-binding protein transcript sclB differed in the number of 5'-pentanucleotide repeats in the signal peptides of AP53 and Alab49 (9 versus 15), translating into different lengths of their signal peptides, which nonetheless maintained a full-length translatable coding frame. Furthermore, GAS strain AP53 acquired two phages that are absent in Alab49. One such phage (ΦAP53.2) contains the known virulence factor superantigen exotoxin gene tandem speK-slaA Overall, we conclude that this bacterium has evolved in multiple ways, including mutational variations of regulatory genes, short-tandem-repeat polymorphisms, large-scale genomic alterations, and acquisition of phages, all of which may be involved in shaping the adaptation of GAS in specific infectious environments and contribute to its enhanced virulence. IMPORTANCE: Infectious strains of S. pyogenes (GAS) are classified by their serotypes, relating to the surface M protein, the emm-like subfamily pattern, and their tropicity toward the nasopharynx and/or skin. It is generally agreed that M proteins from pattern D strains, which also directly bind human host plasminogen, are skin tropic. We have sequenced and characterized the genome of an invasive pattern D GAS strain (AP53) in comparison to a very similar strain (Alab49) that is noninvasive and developed a genomic rationale as to possible reasons for the skin tropicity of these two strains and the greater invasiveness of AP53.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Dermatopatias/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Microbiology (Reading) ; 162(8): 1346-1359, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27329479

RESUMO

Symmetric genomic rearrangements around replication axes in genomes are commonly observed in prokaryotic genomes, including Group A Streptococcus (GAS). However, asymmetric rearrangements are rare. Our previous studies showed that the hypervirulent invasive GAS strain, M23ND, containing an inactivated transcriptional regulator system, covRS, exhibits unique extensive asymmetric rearrangements, which reconstructed a genomic structure distinct from other GAS genomes. In the current investigation, we identified the rearrangement events and examined the genetic consequences and evolutionary implications underlying the rearrangements. By comparison with a close phylogenetic relative, M18-MGAS8232, we propose a molecular model wherein a series of asymmetric rearrangements have occurred in M23ND, involving translocations, inversions and integrations mediated by multiple factors, viz., rRNA-comX (factor for late competence), transposons and phage-encoded gene segments. Assessments of the cumulative gene orientations and GC skews reveal that the asymmetric genomic rearrangements did not affect the general genomic integrity of the organism. However, functional distributions reveal re-clustering of a broad set of CovRS-regulated actively transcribed genes, including virulence factors and metabolic genes, to the same leading strand, with high confidence (p-value ~10-10). The re-clustering of the genes suggests a potential selection advantage for the spatial proximity to the transcription complexes, which may contain the global transcriptional regulator, CovRS, and other RNA polymerases. Their proximities allow for efficient transcription of the genes required for growth, virulence and persistence. A new paradigm of survival strategies of GAS strains is provided through multiple genomic rearrangements, while, at the same time, maintaining genomic integrity.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Rearranjo Gênico/genética , Recombinação Homóloga/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Repressoras/genética , Streptococcus pyogenes/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , Genoma Bacteriano/genética , Histidina Quinase , Análise de Sequência de DNA , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/genética
4.
J Bacteriol ; 197(19): 3191-205, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216843

RESUMO

UNLABELLED: The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. IMPORTANCE: The CovRS system modulates transcription of ∼ 18% of the genes in the Streptococcus pyogenes genome. Mutations that inactivate CovR or CovS enhance the virulence of this bacterium. We determined complete transcriptomes of a naturally CovS-inactivated invasive deep tissue isolate of an emm23 strain of S. pyogenes (M23ND) and its complemented avirulent variant (CovS(+)). We identified diverse virulence genes whose altered expression revealed a genetic switching of a nonvirulent form of M23ND to a highly virulent strain. Furthermore, we also systematically uncovered for the first time the comparative levels of expression of a broad spectrum of metabolic genes, which reflected different metabolic needs of the bacterium as it invaded deeper tissue of the human host.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Cromossomos Bacterianos , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/fisiologia , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasminogênio/genética , Plasminogênio/metabolismo , RNA Bacteriano/genética , Proteínas Repressoras/genética , Streptococcus pyogenes/genética , Transcriptoma , Virulência
5.
J Bacteriol ; 196(23): 4089-102, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225265

RESUMO

The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF(-)) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.


Assuntos
Ordem dos Genes , Genoma Bacteriano , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/genética , Aderência Bacteriana , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Reação em Cadeia da Polimerase , Prófagos/genética , Pseudogenes , Recombinação Genética , Sorogrupo , Streptococcus pyogenes/fisiologia , Virulência , Fatores de Virulência/genética
6.
J Biol Chem ; 288(38): 27494-27504, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23928307

RESUMO

Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neutrófilos/metabolismo , Fagocitose , Proteínas Repressoras/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Complemento C3b/genética , Complemento C3b/metabolismo , Proteína de Ligação ao Complemento C4b/genética , Proteína de Ligação ao Complemento C4b/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Feminino , Frutose-Bifosfato Aldolase , Histidina Quinase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Neutrófilos/microbiologia , Neutrófilos/patologia , Ligação Proteica , Proteínas Repressoras/genética , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Virulência/genética
7.
J Biol Chem ; 288(32): 23488-504, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23737523

RESUMO

The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product's biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ's equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Coproporfirinas/genética , Coproporfirinas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Deleção de Genes , Heme/genética , Oxirredutases/genética , Fenótipo , Staphylococcus aureus/genética
8.
Biochem Biophys Res Commun ; 444(4): 595-8, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486550

RESUMO

Cluster 2b streptokinase (SK2b), secreted by invasive skin-trophic strains of Streptococcus pyogenes (GAS), is a human plasminogen (hPg) activator that optimally functions when human plasma hPg is bound, via its kringle-2 domain, to cognizant bacterial cells through the a1a2 domain of the major cellular hPg receptor, Plasminogen-binding group A streptococcal M-like protein (PAM). Another class of streptokinases (SK1), secreted primarily by GAS strains that possess affinity for pharyngeal infections, does not require PAM-bound hPg for optimal activity. We find herein that replacement of the central ß-domain of SK2b with the same module from SK1 reduces the dependency of SK2b on PAM, and the converse is true when the ß-domain of SK1 is replaced with this same region of SK2b. These data suggest that simple evolutionary shuttling of protein domains in GAS can be employed by GAS to rapidly generate strains that differ in tissue tropism and invasive capability and allow the bacteria to survive different challenges by the host.


Assuntos
Interações Hospedeiro-Patógeno , Ativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/virologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/fisiologia , Estreptoquinase/metabolismo , Humanos , Kringles , Plasminogênio/química , Ativadores de Plasminogênio/química , Infecções Estreptocócicas/enzimologia , Streptococcus pyogenes/química , Streptococcus pyogenes/patogenicidade , Estreptoquinase/química
9.
Biochemistry ; 52(40): 6982-94, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24001266

RESUMO

Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O-O bond-forming reaction. The O-O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl-O cleavage of the natural substrate and subsequent O-O bond formation. While reactions with H2O2 result in slow destruction of the heme, at acidic pH heterolytic cleavage of the O-O bond of PAA cleanly yields the ferryl porphyrin cation radical (compound I). At alkaline pH, the reaction proceeds more rapidly, and the first observed intermediate is a ferryl heme. Freeze-quench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl-O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O-O bond formation from chlorite.


Assuntos
Oxirredutases/metabolismo , Peróxidos/química , Heme/metabolismo , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredutases/química , Ácido Peracético/química , Ácido Peracético/metabolismo , Peroxidase/metabolismo , Rhodocyclaceae/enzimologia
10.
Nat Microbiol ; 1: 15004, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27571972

RESUMO

Streptococcus pyogenes, or group A Streptococcus (GAS), is a human bacterial pathogen that can manifest as a range of diseases from pharyngitis and impetigo to severe outcomes such as necrotizing fasciitis and toxic shock syndrome. GAS disease remains a global health burden with cases estimated at over 700 million annually and over half a million deaths due to severe infections(1). For over 100 years, a clinical hallmark of diagnosis has been the appearance of complete (beta) haemolysis when grown in the presence of blood. This activity is due to the production of a small peptide toxin by GAS known as streptolysin S. Although it has been widely held that streptolysin S exerts its lytic activity through membrane disruption, its exact mode of action has remained unknown. Here, we show, using high-resolution live cell imaging, that streptolysin S induces a dramatic osmotic change in red blood cells, leading to cell lysis. This osmotic change was characterized by the rapid influx of Cl(-) ions into the red blood cells through SLS-mediated disruption of the major erythrocyte anion exchange protein, band 3. Chemical inhibition of band 3 function significantly reduced the haemolytic activity of streptolysin S, and dramatically reduced the pathology in an in vivo skin model of GAS infection. These results provide key insights into the mechanism of streptolysin S-mediated haemolysis and have implications for the development of treatments against GAS.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Bactérias/metabolismo , Hemólise , Streptococcus pyogenes/metabolismo , Estreptolisinas/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Humanos , Microscopia Intravital , Camundongos , Ovinos , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia
11.
PLoS One ; 9(6): e100698, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24968349

RESUMO

The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS- was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection.


Assuntos
Regulação Bacteriana da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Desoxirribonucleases/metabolismo , Engenharia Genética , Histidina Quinase , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/patogenicidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA