RESUMO
BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.
Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Isquemia Miocárdica , Acidente Vascular Cerebral , Humanos , Temperatura Alta , Temperatura , Causas de Morte , Temperatura Baixa , Morte , MortalidadeRESUMO
BACKGROUND: Nationwide evidence linking maternal ozone exposure with fetal growth restriction (FGR) was extensively scarce, especially in the Middle East with dry climate and distinct religious culture. METHODS: We carried out a national retrospective birth cohort study using registry-based records from 749 hospitals across 31 provinces in Iran from 2013 to 2018. Monthly concentrations of maximum daily average 8-hour (MDA8) ozone at 0.125° × 0.125° resolution were extracted from well-validated spatiotemporal grid dataset. Linear and logistic regression models were employed to evaluate associations of maternal MDA8 ozone exposure with birthweight outcomes. Assuming causality, the comparative risk assessment framework was utilized to estimate the burden of low birthweight (LBW), small for gestational age (SGA), and birthweight loss per livebirth (BLL) attributable to ambient ozone pollution. RESULTS: Of 4030383 livebirths included in the study, 264304 (6.6%) were LBW and 484405 (12.0%) were SGA. Each 10-ppb increase in MDA8 ozone exposure was associated with an odds ratio of 1.123 (95% confidence interval [CI]: 1.104 to 1.142) for LBW and 1.210 (95% CI: 1.197 to 1.223) for SGA, and a 30.5-g (95% CI: 29.0 to 32.0) reduction in birthweight. We observed approximately linear exposure-response relationships of maternal MDA8 ozone exposure with LBW (Pnonlinear= 0.786), SGA (Pnonlinear= 0.156), and birthweight reduction (Pnonlinear= 0.104). Under the premise of causal association, we estimated 6.6% (95% CI: 5.7 to 7.5) of LBW, 10.1% (95% CI: 9.6 to 10.6) of SGA, and 18.8â¯g (95% CI: 17.9 to 19.7) of BLL could be attributable to maternal ozone exposure in Iran. Considerably greater risk and burden of ozone-related FGR were observed among younger, less-educated, and rural-dwelling mothers. CONCLUSIONS: Our study provided compelling evidence that maternal ozone exposure was associated with heightened FGR risk and burden, particularly among socioeconomically disadvantaged mothers. These findings underscored the urgent need for government to incorporate socioeconomic factors into future ozone-related health policies, not only to mitigate pollution, but also minimize inequality.
Assuntos
Poluentes Atmosféricos , Peso ao Nascer , Recém-Nascido de Baixo Peso , Exposição Materna , Ozônio , Humanos , Ozônio/análise , Ozônio/efeitos adversos , Feminino , Irã (Geográfico)/epidemiologia , Recém-Nascido , Exposição Materna/estatística & dados numéricos , Exposição Materna/efeitos adversos , Gravidez , Estudos Retrospectivos , Peso ao Nascer/efeitos dos fármacos , Adulto , Poluentes Atmosféricos/análise , Recém-Nascido Pequeno para a Idade Gestacional , Estudos de Coortes , Retardo do Crescimento Fetal/epidemiologia , Retardo do Crescimento Fetal/induzido quimicamente , Masculino , Adulto JovemRESUMO
BACKGROUND: Fine particulate matter pollution (PM2.5) is widely considered to be a top-ranked risk factor for premature mortality and years of life lost (YLL). However, evidence regarding the effect of daily air quality improvement on life expectancy is scarce, especially in the Middle East such as Iran. This study aimed to investigate the potential benefits in life expectancy at concentrations meeting the daily PM2.5 standards during 2012-2016 in Tehran, Iran. METHODS: We collected daily non-accidental mortality and data on air pollutants and weather conditions from Tehran, Iran, 2012-2016. A quasi-Poisson or Gaussian time-series regression was employed to fit the associations between ambient PM2.5 and mortality or YLL. Potential gains in life expectancy (PGLE) and attributable fraction (AF) were estimated by assuming that daily PM2.5 concentrations attained the World Health Organization air quality guidelines (WHO AQG) 2005 (25 µg/m3) and 2021 (15 µg/m3). RESULTS: During the study period, a total of 221,231 non-accidental deaths were recorded in Tehran, resulting in 3.6 million YLL. The mean concentration of ambient PM2.5 was 34.7 µg/m3 (standard deviation: 15.3 µg/m3). For a 10-µg/m3 rise in 4-day moving average (lag 03-day) in PM2.5 concentration, non-accidental mortality and YLL increased by 1.12% (95% confidence interval: 0.60, 1.65) and 20.73 (7.08, 34.39) person years, respectively. A relatively higher effect was observed in males and young adults aged 18-64 years. We estimated that 39830 [AF = 1.1%] and 74284 [AF = 2.1%] YLL could potentially be avoided if daily PM2.5 concentrations attained the WHO AQG 2005 and 2021, respectively, which corresponded to potential gains in life expectancy of 0.18 (0.06, 0.30) and 0.34 (0.11, 0.56) years for each deceased person. PM2.5-associated PGLE estimates were largely robust when performing sensitivity analyses. CONCLUSIONS: Our findings indicated that short-term exposure to PM2.5 is associated with increased non-accidental YLL and mortality. Prolonged life expectancy could be achieved if the particulate matter air pollution level were kept under a stricter standard.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Exposição Ambiental/análise , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Material Particulado/análise , Organização Mundial da Saúde , Adulto JovemRESUMO
Background: Heterogeneity in temperature-mortality relationships across locations may partly result from differences in the demographic structure of populations and their cause-specific vulnerabilities. Here we conduct the largest epidemiological study to date on the association between ambient temperature and mortality by age and cause using data from 532 cities in 33 countries. Methods: We collected daily temperature and mortality data from each country. Mortality data was provided as daily death counts within age groups from all, cardiovascular, respiratory, or noncardiorespiratory causes. We first fit quasi-Poisson regression models to estimate location-specific associations for each age-by-cause group. For each cause, we then pooled location-specific results in a dose-response multivariate meta-regression model that enabled us to estimate overall temperature-mortality curves at any age. The age analysis was limited to adults. Results: We observed high temperature effects on mortality from both cardiovascular and respiratory causes compared to noncardiorespiratory causes, with the highest cold-related risks from cardiovascular causes and the highest heat-related risks from respiratory causes. Risks generally increased with age, a pattern most consistent for cold and for nonrespiratory causes. For every cause group, risks at both temperature extremes were strongest at the oldest age (age 85 years). Excess mortality fractions were highest for cold at the oldest ages. Conclusions: There is a differential pattern of risk associated with heat and cold by cause and age; cardiorespiratory causes show stronger effects than noncardiorespiratory causes, and older adults have higher risks than younger adults.
RESUMO
BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.
Assuntos
Doenças Cardiovasculares , Temperatura , Humanos , Doenças Cardiovasculares/mortalidade , Mortalidade , Doenças Respiratórias/mortalidade , Estações do AnoRESUMO
The nexus between prenatal greenspace exposure and low birth weight (LBW) remains largely unstudied in low- and middle-income countries (LMICs). We investigated a nationwide retrospective cohort of 4,021,741 live births (263,728 LBW births) across 31 provinces in Iran during 2013-2018. Greenness exposure during pregnancy was assessed using satellite-based normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). We estimated greenness-LBW associations using multiple logistic models, and quantified avoidable LBW cases under scenarios of improved greenspace through counterfactual analyses. Association analyses provide consistent evidence for approximately L-shaped exposure-response functions, linking 7.0-11.5% declines in the odds of LBW to each 0.1-unit rise in NDVI/EVI with multiple buffers. Assuming causality, 3931-5099 LBW births can be avoided by achieving greenness targets of mean NDVI/EVI, amounting to 4.4-5.6% of total LBW births in 2015. Our findings suggest potential health benefits of improved greenspace in lowering LBW risk and burden in LMICs.
Assuntos
Recém-Nascido de Baixo Peso , Nascido Vivo , Recém-Nascido , Gravidez , Feminino , Humanos , Peso ao Nascer , Estudos Retrospectivos , Irã (Geográfico)/epidemiologiaRESUMO
OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 µg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 µg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Ozônio , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Fatores de Tempo , Exposição Ambiental/efeitos adversosRESUMO
BACKGROUND: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. OBJECTIVES: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. METHODS: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 µm (PM10), PM ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. RESULTS: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 µg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 µg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 µg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. CONCLUSIONS: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Temperatura Alta , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análiseRESUMO
BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.
Assuntos
Mudança Climática , Temperatura Alta , Cidades , Meio Ambiente , Finlândia , Humanos , MortalidadeRESUMO
BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â×â0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â×â0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1â753â392 deaths (95% CI 1â159â901-2â357â718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.
Assuntos
Biodiversidade , Saúde Global , Austrália , Cidades , Feminino , Humanos , Gravidez , TemperaturaRESUMO
Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
RESUMO
BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5°â×â0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100â000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5â083â173 deaths (95% empirical CI [eCI] 4â087â967-5â965â520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100â000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2â617â322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.
Assuntos
Temperatura Baixa , Temperatura Alta , Austrália , Mudança Climática , TemperaturaRESUMO
BACKGROUND: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. METHODS: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. RESULTS: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. CONCLUSIONS: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
RESUMO
BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25°â×â0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 µg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.
Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Austrália , Exposição Ambiental , Material Particulado/análiseRESUMO
Exposure to suboptimal ambient temperature during pregnancy has been reported as a potential teratogen of fetal development. However, limited animal evidence is available regarding the impact of extreme temperatures on maternal pregnancy and the subsequent adverse pregnancy outcomes. Our objective in this study is to investigate the relationship between temperature and maternal stress during pregnancy in mice. This study used the Naval Medical Research Institute (NMRI) mice during the second and third pregnant weeks with the gestational day (GD) (GD 6.5-14.5 and GD 14.5-17.5). Mice were exposed to suboptimal ambient temperature (1 °C, 5 °C, 10 °C, 15 °C, 40 °C, 42 °C, 44 °C, 46 °C, and 48 °C for the experimental group and 23 °C for the control group) 1 h per day, 7 days a weekin each trimester. Measurements of placental development (placental weight [PW] and placental diameter [PD]) and fetal growth (fetal weight [FW] and crown-to-rump length [CRL]) between experimental and control groups were compared using analysis of variance (ANOVA). Data on the occurrence of preterm birth (PTB) and abnormalities were also collected. The results showed that exposure to both cold and heat stress in the second and third weeks of pregnancy caused significant decreases in measurements of placental development (PW and PD) and fetal growth (FW and CRL). For all temperature exposures, 15 °C was identified as the optimal temperature in the development of the embryo. Most PTB occurrences were observed in high-temperature stress groups, with the highest PTB number seen in the exposure group at 48 °C, whereas PTB occurred only at 1 °C among cold stress groups. In the selected exposure experiments, an approximate U-shaped relation was observed between temperature and number of abnormality occurrence. The highest percentage of these anomalies occurred at temperatures of 1 °C and 48 °C, while no abnormalities were observed at 15 °C and in the control group. Our findings strengthened the evidence that exposure to suboptimal ambient temperatures may trigger adverse pregnancy outcomes and worsen embryo and fetal development in mice.
Assuntos
Nascimento Prematuro , Animais , Estatura Cabeça-Cóccix , Feminino , Desenvolvimento Fetal , Camundongos , Gravidez , Resultado da Gravidez , TemperaturaRESUMO
BACKGROUND: Evidence for associations between fine particulate matter (PM2.5) and cardiovascular diseases (CVDs) in Iran is scarce. Given large within-day variations of PM2.5 concentration, using the daily mean of PM2.5 (PM2.5mean) as exposure metric might bias the health-related assessment. This study applied a novel indicator, daily excessive concentration hours (DECH), to evaluate the effect of ambient PM2.5 on CVD mortality and years of life lost (YLL) in Tehran, the capital city of Iran. METHODS: Hourly concentration data for PM2.5, daily information for meteorology and records of registered cardiovascular deaths from 2012 to 2016 were obtained from Tehran, Iran. Daily excessive concentration hours of PM2.5 (PM2.5DECH) was defined as daily total concentration-hours exceeding 35⯵g/m3. Using a time-series design, we applied generalized linear models to assess the attributable effects of PM2.5DECH and PM2.5mean on CVD mortality and YLL. RESULTS: For an interquartile range (IQR) rise in PM2.5DECH, total CVD mortality at lag 0-10â¯days and YLL at lag 0-8â¯days increased 2.26% (95% confidence interval (CI): 0.85-3.69%) and 23.24 (6.07-40.42) person years, respectively. Corresponding increases were 3.45% (1.44-5.49%) and 35.21 (10.85-59.58) person years for an IQR rise in PM2.5mean. Significant associations between PM2.5 pollution (i.e., PM2.5mean and PM2.5DECH) and cause-specific cardiovascular health (i.e., mortality and YLL) were only identified in stroke. Subgroup analyses showed that male and people aged 0-64â¯years suffered more from PM2.5 pollution. Furthermore, we attributed a greater CVD burden to PM2.5DECH (1.67% for mortality and 2.67% for YLL) than PM2.5mean (0.63% for mortality and 0.70% for YLL) during the study period. CONCLUSIONS: This study strengthened the evidence for the aggravated CVD mortality burden associated with short-term exposure to PM2.5. Our findings also suggested that PM2.5DECH might be a potential alternative indicator of exposure assessment in PM2.5-related health investigations.
Assuntos
Doenças Cardiovasculares , Adolescente , Adulto , Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares/mortalidade , Criança , Pré-Escolar , Cidades , Exposição Ambiental , Feminino , Humanos , Lactente , Recém-Nascido , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mortalidade , Material Particulado , Adulto JovemRESUMO
BACKGROUND: Increased atmospheric particulate matter (PM) concentrations are commonly observed during desert dust days in Iran, but there is still no evidence of their effects on human health. We aimed to evaluate the association between daily mortality and exposure to PM10 and PM2.5 during dust and non-dust days in Tehran and Ahvaz, two major Middle Eastern cities with different sources, intensity, and frequency of desert dust days. METHODS: We identified desert dust days based on exceeding a daily PM10 concentration threshold of 150⯵g/m3 between 2014 and 2017, checking for low PM2.5/PM10 ratio typical of dust days. We used a time-stratified case-crossover design to estimate the short-term effects of PM10 and PM2.5 concentrations on daily mortality during dust and non-dust days. Data was analyzed using conditional Poisson regression models. RESULTS: Higher concentrations of PM and frequency of desert dust days were observed in Ahvaz rather than Tehran. In Ahvaz, the effect of PM10 at lag 0 was much higher during dust days, an increment of 10⯵g/m3 was associated with 3.28% (95%CIâ¯=â¯[2.42, 4.15]) increase of daily mortality, than non-dust days, 1.03% (95%CIâ¯=â¯[-0.02, 2.08]), while in Tehran, was slightly higher during non-dust days, 0.72% (95%CIâ¯=â¯[0.23, 1.23]), than in dust days, 0.49% (95%CIâ¯=â¯[-0.22, 1.20]). No statistically significant associations were observed between PM2.5 and daily mortality in Ahvaz, while in Teheran the effect of PM2.5 increased significantly during non-dust days at lag 2, 1.89% (95%CIâ¯=â¯[0.83, 1.2.95] and lag 3, 1.88% (95%CIâ¯=â¯[0.83, 1.2.95]). CONCLUSION: The study provides evidence that exposure to PM during Middle East dust days is an important risk factor to human health in arid regions and areas affected by desert dust events.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Poeira , Mortalidade , Material Particulado/efeitos adversos , Cidades , Estudos Cross-Over , Clima Desértico , Humanos , Irã (Geográfico)RESUMO
BACKGROUND: Weather and climate play a significant role in human health. We are accustomed to affects the weather conditions. By increasing or decreasing the environment temperature or change of seasons, some diseases become prevalent or remove. This study investigated the role of temperature in cardiovascular disease mortality of city of Mashhad in the current decade and its simulation in the future decades under conditions of climate change. METHODS: Cardiovascular disease mortality data and the daily temperatures data were used during (2004-2013) period. First, the correlation between cardiovascular disease mortality and maximum and minimum temperatures were calculated then by using General Circulation Model, Emissions Scenarios, and temperature data were extracted for the next five decades and finally, mortality was simulated. RESULTS: There is a strong positive association between maximum temperature and mortality (r= 0.83, P-value<0.01), also observed a negative and weak but significant association between minimum temperatures and mortality. The results obtained from simulation show increased temperature in the next decades in Mashhad and a 1 °C increase in maximum temperature is associated with a 4.27% (95%CI: 0.91, 7.00) increase in Cardiovascular disease mortality. CONCLUSION: By increasing temperature and the number of hot days the cardiovascular disease mortality increases and these increases will be intensified in the future decades. Therefore, necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable group.
RESUMO
BACKGROUND: Few studies have examined variation in the associations between heat waves and mortality in an international context. OBJECTIVES: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. METHODS: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave-mortality relation over lags of 0-10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. RESULTS: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave-mortality associations, but not daily minimum temperature. CONCLUSIONS: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026.