RESUMO
Chronic Ocular Diseases (COD) such as myopia, diabetic retinopathy, age-related macular degeneration, glaucoma, and cataract can affect the eye and may even lead to severe vision impairment or blindness. According to a recent World Health Organization (WHO) report on vision, at least 2.2 billion individuals worldwide suffer from vision impairment. Often, overt signs indicative of COD do not manifest until the disease has progressed to an advanced stage. However, if COD is detected early, vision impairment can be avoided by early intervention and cost-effective treatment. Ophthalmologists are trained to detect COD by examining certain minute changes in the retina, such as microaneurysms, macular edema, hemorrhages, and alterations in the blood vessels. The range of eye conditions is diverse, and each of these conditions requires a unique patient-specific treatment. Convolutional neural networks (CNNs) have demonstrated significant potential in multi-disciplinary fields, including the detection of a variety of eye diseases. In this study, we combined several preprocessing approaches with convolutional neural networks to accurately detect COD in eye fundus images. To the best of our knowledge, this is the first work that provides a qualitative analysis of preprocessing approaches for COD classification using CNN models. Experimental results demonstrate that CNNs trained on the region of interest segmented images outperform the models trained on the original input images by a substantial margin. Additionally, an ensemble of three preprocessing techniques outperformed other state-of-the-art approaches by 30% and 3%, in terms of Kappa and F 1 scores, respectively. The developed prototype has been extensively tested and can be evaluated on more comprehensive COD datasets for deployment in the clinical setup.
RESUMO
Objective: Diabetes mellitus is an important chronic disease that is prevalent around the world. Different countries and diverse cultures use varying approaches to dealing with this chronic condition. Also, with the advancement of computation and automated decision-making, many tools and technologies are now available to patients suffering from this disease. In this work, the investigators attempt to analyze approaches taken towards managing this illness in India and the United States. Methods: In this work, the investigators have used available literature and data to compare the use of artificial intelligence in diabetes management. Findings: The article provides key insights to comparison of diabetes management in terms of the nature of the healthcare system, availability, electronic health records, cultural factors, data privacy, affordability, and other important variables. Interestingly, variables such as quality of electronic health records, and cultural factors are key impediments in implementing an efficiency-driven management system for dealing with this chronic disease. Conclusion: The article adds to the body of knowledge associated with the management of this disease, establishing a critical need for using artificial intelligence in diabetes care management.
RESUMO
Diabetic Macular Edema (DME) represents a significant visual impairment among individuals with diabetes, leading to a dramatic reduction in visual acuity and potentially resulting in irreversible vision loss. Optical Coherence Tomography (OCT), a technique that produces high-resolution retinal images, plays a vital role in the clinical assessment of this condition. Physicians typically rely on OCT B-Scan images to evaluate DME severity. However, manual interpretation of these images is susceptible to errors, which can lead to detrimental consequences, such as misdiagnosis and improper treatment strategies. Hence, there is a critical need for more reliable diagnostic methods. This study aims to address this gap by proposing an automated model based on Generative Adversarial Networks (GANs) to generate OCT B-Scan images of DME. The model synthesizes images from patients' baseline OCT B-Scan images, which could potentially enhance the robustness of DME detection systems. We employ five distinct GANs in this study: Deep Convolutional GAN, Conditional GAN, CycleGAN, StyleGAN2, and StyleGAN3, drawing comparisons across their performance. Subsequently, the hyperparameters of the best-performing GAN are fine-tuned using Particle Swarm Optimization (PSO) to produce more realistic OCT images. This comparative analysis not only serves to improve the detection of DME severity using OCT images but also provides insights into the appropriate choice of GANs for the effective generation of realistic OCT images from the baseline OCT datasets.
RESUMO
Diabetic Macular Edema (DME) is a severe ocular complication commonly found in patients with diabetes. The condition can precipitate a significant drop in VA and, in extreme cases, may result in irreversible vision loss. Optical Coherence Tomography (OCT), a technique that yields high-resolution retinal images, is often employed by clinicians to assess the extent of DME in patients. However, the manual interpretation of OCT B-scan images for DME identification and severity grading can be error-prone, with false negatives potentially resulting in serious repercussions. In this paper, we investigate an Artificial Intelligence (AI) driven system that offers an end-to-end automated model, designed to accurately determine DME severity using OCT B-Scan images. This model operates by extracting specific biomarkers such as Disorganization of Retinal Inner Layers (DRIL), Hyper Reflective Foci (HRF), and cystoids from the OCT image, which are then utilized to ascertain DME severity. The rules guiding the fuzzy logic engine are derived from contemporary research in the field of DME and its association with various biomarkers evident in the OCT image. The proposed model demonstrates high efficacy, identifying images with DRIL with 93.3% accuracy and successfully segmenting HRF and cystoids from OCT images with dice similarity coefficients of 91.30% and 95.07% respectively. This study presents a comprehensive system capable of accurately grading DME severity using OCT B-scan images, serving as a potentially invaluable tool in the clinical assessment and treatment of DME.
RESUMO
Content-based image retrieval (CBIR) systems are designed to retrieve images that are relevant, based on detailed analysis of latent image characteristics, thus eliminating the dependency of natural language tags, text descriptions, or keywords associated with the images. A CBIR system maintains high-level image visuals in the form of feature vectors, which the retrieval engine leverages for similarity-based matching and ranking for a given query image. In this paper, a CBIR system is proposed for the retrieval of medical images (CBMIR) for enabling the early detection and classification of lung diseases based on lung X-ray images. The proposed CBMIR system is built on the predictive power of deep neural models for the identification and classification of disease-specific features using transfer learning based models trained on standard COVID-19 Chest X-ray image datasets. Experimental evaluation on the standard dataset revealed that the proposed approach achieved an improvement of 49.71% in terms of precision, averaging across various distance metrics. Also, an improvement of 26.55% was observed in the area under precision-recall curve (AUPRC) values across all subclasses.
RESUMO
Microbial keratitis is an infection of the cornea of the eye that is commonly caused by prolonged contact lens wear, corneal trauma, pre-existing systemic disorders and other ocular surface disorders. It can result in severe visual impairment if improperly managed. According to the latest World Vision Report, at least 4.2 million people worldwide suffer from corneal opacities caused by infectious agents such as fungi, bacteria, protozoa and viruses. In patients with fungal keratitis (FK), often overt symptoms are not evident, until an advanced stage. Furthermore, it has been reported that clear discrimination between bacterial keratitis and FK is a challenging process even for trained corneal experts and is often misdiagnosed in more than 30% of the cases. However, if diagnosed early, vision impairment can be prevented through early cost-effective interventions. In this work, we propose a multi-scale convolutional neural network (MS-CNN) for accurate segmentation of the corneal region to enable early FK diagnosis. The proposed approach consists of a deep neural pipeline for corneal region segmentation followed by a ResNeXt model to differentiate between FK and non-FK classes. The model trained on the segmented images in the region of interest, achieved a diagnostic accuracy of 88.96%. The features learnt by the model emphasize that it can correctly identify dominant corneal lesions for detecting FK.