Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 481(7382): 475-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237021

RESUMO

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.


Assuntos
Planetas , Meio Ambiente Extraterreno/química , Voo Espacial , Astronave , Astros Celestes
2.
Nature ; 449(7164): 872-5, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17943124

RESUMO

Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

3.
Astron J ; 156(5)2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33510541

RESUMO

The search for exoplanets in the radio bands has been focused on detecting radio emissions produced by the interaction between magnetized planets and the stellar wind (auroral emission). Here we introduce a new tool, which is part of our MHD stellar corona model, to predict the ambient coronal radio emission and its modulations induced by a close planet. For simplicity, the present work assumes that the exoplanet is stationary in the frame rotating with the stellar rotation. We explore the radio flux modulations using a limited parameter space of idealized cases by changing the magnitude of the planetary field, its polarity, the planetary orbital separation, and the strength of the stellar field. We find that the modulations induced by the planet could be significant and observable in the case of hot Jupiter planets - above 100% modulation with respect to the ambient flux in the 10 - 100 MHz range in some cases, and 2-10% in the frequency bands above 250 MHz for some cases. Thus, our work indicates that radio signature of exoplanets might not be limited to low-frequency radio range. We find that the intensity modulations are sensitive to the planetary magnetic field polarity for short-orbit planets, and to the stellar magnetic field strength for all cases. The new radio tool, when applied to real systems, could provide predictions for the frequency range at which the modulations can be observed by current facilities.

4.
Science ; 337(6101): 1511-4, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22933522

RESUMO

We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA