Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
2.
Front Immunol ; 14: 1238664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781401

RESUMO

Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.


Assuntos
Tecido Adiposo , Aterosclerose , Humanos , Tecido Adiposo/patologia , Adipócitos/patologia , Aterosclerose/patologia , Inflamação , Células Mieloides/patologia
3.
Cancers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626121

RESUMO

DNA damaging modalities are the backbone of treatments for non-small cell lung cancer (NSCLC). Alterations in DNA damage response (DDR) in tumor cells commonly contribute to emerging resistance to platinating agents, other targeted therapies, and radiation. The goal of this study is to identify the previously unreported role of NEDD9 scaffolding protein in controlling DDR processes and sensitivity to DNA damaging therapies. Using a siRNA-mediated approach to deplete NEDD9 in a group of human and murine KRAS/TP53-mutant NSCLC cell lines, coupled with a set of cell viability and clonogenic assays, flow cytometry analysis, and Western blotting, we evaluated the effects of NEDD9 silencing on cellular proliferation, DDR and epithelial-to-mesenchymal transition (EMT) signaling, cell cycle, and sensitivity to cisplatin and UV irradiation. Using publicly available NSCLC datasets (TCGA) and an independent cohort of primary NSCLC tumors, subsequent in silico and immunohistochemical (IHC) analyses were performed to assess relevant changes in NEDD9 RNA and protein expression across different stages of NSCLC. The results of our study demonstrate that NEDD9 depletion is associated with the increased tumorigenic capacity of NSCLC cells. These phenotypes were accompanied by significantly upregulated ATM-CHK2 signaling, shifting towards a more mesenchymal phenotype in NEDD9 depleted cells and elevated sensitivity to UV-irradiation. IHC analyses revealed an association between reduced NEDD9 protein expression and a decrease in overall (OS) and progression-free survival (PFS) of the NSCLC patients. These data, for the first time, identified NEDD9 as a negative regulator of ATM kinase activity and related DDR signaling in numerous KRAS/TP53 mutated NSCLC, with its effects on the regulation of DDR-dependent EMT signaling, sensitivity to DNA damaging modalities in tumor cells, and the survival of the patients.

4.
Cancer Discov ; 12(8): 1960-1983, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723626

RESUMO

Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE: HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Interleucina-27 , Neoplasias Hepáticas , Linfócitos T Citotóxicos , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucina-27/imunologia , Interleucinas/imunologia , Neoplasias Hepáticas/imunologia , Prognóstico , Receptores de Interleucina/imunologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
5.
Cells ; 10(2)2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562334

RESUMO

Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.


Assuntos
Aterosclerose/microbiologia , Citocinas/metabolismo , Microbiota , Mucosa/patologia , Animais , Aterosclerose/patologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/patologia
6.
RSC Adv ; 11(8): 4555-4571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996031

RESUMO

Tropolones are promising organic compounds that can have important biologic effects. We developed a series of new 2-quinolyl-1,3-tropolones derivatives that were prepared by the acid-catalyzed reaction of 4,7-dichloro-2-methylquinolines with 1,2-benzoquinones. 2-Quinolyl-1,3-tropolones have been synthesized and tested for their anti-proliferative activity against several human cancer cell lines. Two compounds (3d and mixture B of 3i-k) showed excellent activity against six cancer cell lines of different tissue of origin. The promising compounds 3d and mixture B of 3i-k also demonstrated induction of apoptotic cell death of ovarian cancer (OVCAR-3, OVCAR-8) and colon cancer (HCT 116) cell lines and affected ERK signaling. In summary, 2-quinolyl-1,3-tropolones are promising compounds for development of effective anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA