RESUMO
Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.
RESUMO
Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La_{2-x}Sr_{x}NiO_{4+δ} (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries.
RESUMO
Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties governed by their geometries. In parallel, interest in x-ray photon orbital angular momentum (OAM) has been rapidly growing. Here we show that a square ASI with a patterned topological defect, a double edge dislocation, imparts OAM to scattered x rays. Unlike single dislocations, a double dislocation does not introduce magnetic frustration, and the ASI equilibrates to its antiferromagnetic (AFM) ground state. The topological charge of the defect differs with respect to the structural and magnetic order; thus, x-ray diffraction from the ASI produces photons with even and odd OAM quantum numbers at the structural and AFM Bragg conditions, respectively. The magnetic transitions of the ASI allow the AFM OAM beams to be switched on and off by modest variations of temperature and applied magnetic field. These results demonstrate ASIs can serve as metasurfaces for reconfigurable x-ray optics that could enable selective probes of electronic and magnetic properties.
RESUMO
Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O2- displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H+ pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H+ insertion at a Co/GdOx interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal-metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin-orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii-Moriya interaction, and spin-orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin-orbitronics.
RESUMO
The metal-insulator phase transition in magnetite, known as the Verwey transition, is characterized by a charge-orbital ordering and a lattice transformation from a cubic to monoclinic structure. We use x-ray photon correlation spectroscopy to investigate the dynamics of this charge-orbitally ordered insulating phase undergoing the insulator-to-metal transition. By tuning to the Fe L_{3} edge at the (001/2) superlattice peak, we probe the evolution of the Fe t_{2g} orbitally ordered domains present in the low temperature insulating phase and forbidden in the high temperature metallic phase. We observe two distinct regimes below the Verwey transition. In the first regime, magnetite follows an Arrhenius behavior and the characteristic timescale for orbital fluctuations decreases as the temperature increases. In the second regime, magnetite phase separates into metallic and insulating domains, and the kinetics of the phase transition is dictated by metallic-insulating interfacial boundary conditions.
RESUMO
In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.
RESUMO
Radon is a radioactive gas and a major source of ionizing radiation exposure for humans. Consequently, it can pose serious health threats when it accumulates in confined environments. In Europe, recent legislation has been adopted to address radon exposure in dwellings; this law establishes national reference levels and guidelines for defining Radon Priority Areas (RPAs). This study focuses on mapping the Geogenic Radon Potential (GRP) as a foundation for identifying RPAs and, consequently, assessing radon risk in indoor environments. Here, GRP is proposed as a hazard indicator, indicating the potential for radon to enter buildings from geological sources. Various approaches, including multivariate geospatial analysis and the application of artificial intelligence algorithms, have been utilised to generate continuous spatial maps of GRP based on point measurements. In this study, we employed a robust multivariate machine learning algorithm (Random Forest) to create the GRP map of the central sector of the Pusteria Valley, incorporating other variables from census tracts such as land use as a vulnerability factor, and population as an exposure factor to create the risk map. The Pusteria Valley in northern Italy was chosen as the pilot site due to its well-known geological, structural, and geochemical features. The results indicate that high Rn risk areas are associated with high GRP values, as well as residential areas and high population density. Starting with the GRP map (e.g., Rn hazard), a new geological-based definition of the RPAs is proposed as fundamental tool for mapping Collective Radon Risk Areas in line with the main objective of European regulations, which is to differentiate them from Individual Risk Areas.
RESUMO
Numerous field and laboratory studies have been conducted to investigate the relationship between radon variation and seismic events, as well as the complex link between radon emission and rock deformation mechanisms. However, a clear understanding of this correspondence and systematic observations of these phenomena are still lacking, and recent experimental studies have yet to yield conclusive results. In this study, we investigate the possible relationships between radon migration dynamics and rock deformation at the micro-scale through laboratory experiments using the SHIVA apparatus under shear stress-controlled conditions and simultaneous high-resolution radon measurements. We studied the behaviour of three different lithologies to show that radon emission varies in response to rock deformation and this variation is highly dependent on the mineralogy and microstructure. This study represents the first attempt to define radon gas as an indicator of transient and rapid rock deformation at the micro-scale.
RESUMO
Earthquakes often occur along faults in the presence of hot, pressurized water. Here we exploit a new experimental device to study friction in gabbro faults with water in vapor, liquid and supercritical states (water temperature and pressure up to 400 °C and 30 MPa, respectively). The experimental faults are sheared over slip velocities from 1 µm/s to 100 mm/s and slip distances up to 3 m (seismic deformation conditions). Here, we show with water in the vapor state, fault friction decreases with increasing slip distance and velocity. However, when water is in the liquid or supercritical state, friction decreases with slip distance, regardless of slip velocity. We propose that the formation of weak minerals, the chemical bonding properties of water and (elasto)hydrodynamic lubrication may explain the weakening behavior of the experimental faults. In nature, the transition of water from liquid or supercritical to vapor state can cause an abrupt increase in fault friction that can stop or delay the nucleation phase of an earthquake.
RESUMO
The assessment of potential radon-hazardous environments is nowadays a critical issue in planning, monitoring, and developing appropriate mitigation strategies. Although some geological structures (e.g., fault systems) and other geological factors (e.g., radionuclide content, soil organic or rock weathering) can locally affect the radon occurrence, at the basis of a good implementation of radon-safe systems, optimized modelling at territorial scale is required. The use of spatial regression models, adequately combining different types of predictors, represents an invaluable tool to identify the relationships between radon and its controlling factors as well as to construct Geogenic Radon Potential (GRP) maps of an area. In this work, two GRP maps were developed based on field measurements of soil gas radon and thoron concentrations and gamma spectrometry of soil and rock samples of the Euganean Hills (northern Italy) district. A predictive model of radon concentration in soil gas was reconstructed taking into account the relationships among the soil gas radon and seven predictors: terrestrial gamma dose radiation (TGDR), thoron (220Rn), fault density (FD), soil permeability (PERM), digital terrain model (SLOPE), moisture index (TMI), heat load index (HLI). These predictors allowed to elaborate local spatial models by using the Empirical Bayesian Regression Kriging (EBRK) in order to find the best combination and define the GRP of the Euganean Hills area. A second GRP map based on the Neznal approach (GRPNEZ) has been modelled using the TGDR and 220Rn, as predictors of radon concentration, and FD as predictor of soil permeability. Then, the two GRP maps have been compared. Results highlight that the radon potential is mainly driven by the bedrock type but the presence of fault systems and topographic features play a key role in radon migration in the subsoil and its exhalation at the soil/atmosphere boundary.
Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Poluentes Radioativos do Ar/análise , Teorema de Bayes , Radônio/análise , Poluentes Radioativos do Solo/análise , Análise EspacialRESUMO
Magnetic domains play a fundamental role in physics of magnetism and its technological applications. Dynamics of antiferromagnetic domains is poorly understood, although antiferromagnets are expected to be extensively used in future electronic devices wherein it determines the stability and operational speed. Dynamics of antiferromagnets also features prominently in the studies of topological quantum matter. Real-space imaging of fluctuating antiferromagnetic domains is therefore highly desired but has never been demonstrated. We use coherent x-ray diffraction to obtain videos of fluctuating micrometer-scale antiferromagnetic domains in Ni2MnTeO6 on time scales from 10-1 to 103 s. In the collinear phase, thermally activated domain wall motion is observed in the vicinity of the Néel temperature. Unexpectedly, the fluctuations persist through the full range of the higher-temperature helical phase. These observations illustrate the high potential significance of the dynamic domain imaging in phase transition studies and in magnetic device research.
RESUMO
The detection and manipulation of antiferromagnetic domains and topological antiferromagnetic textures are of central interest to solid-state physics. A fundamental step is identifying tools to probe the mesoscopic texture of an antiferromagnetic order parameter. In this work, we demonstrate that Bragg coherent diffractive imaging can be extended to study the mesoscopic texture of an antiferromagnetic order parameter using resonant magnetic x-ray scattering. We study the onset of the antiferromagnet transition in PrNiO3, focusing on a temperature regime in which the antiferromagnetic domains are dilute in the beam spot and the coherent diffraction pattern modulating the antiferromagnetic peak is greatly simplified. We demonstrate that it is possible to extract the arrangements and sizes of these domains from single diffraction patterns and show that the approach could be extended to a time-structured light source to study the motion of dilute domains or the motion of topological defects in an antiferromagnetic spin texture.
RESUMO
This work highlights the importance of the Geogenic Radon Potential (GRP) component originated by degassing processes in fault zones. This Tectonically Enhanced Radon (TER) can increase radon concentration in soil gas and the inflow of radon in the buildings (Indoor Radon Concentrations, IRC). Although tectonically related radon enhancement is known in areas characterised by active faults, few studies have investigated radon migration processes in non-active fault zones. The Pusteria Valley (Bolzano, north-eastern Italy) represents an ideal geological setting to study the role of a non-seismic fault system in enhancing the geogenic radon. Here, most of the municipalities are characterised by high IRC. We performed soil gas surveys in three of these municipalities located along a wide section of the non-seismic Pusteria fault system characterised by a dense network of faults and fractures. Results highlight the presence of high Rn concentrations (up to 800 kBq·m-3) with anisotropic spatial patterns oriented along the main strike of the fault system. We calculated a Radon Activity Index (RAI) along north-south profiles across the Pusteria fault system and found that TER is linked to high fault geochemical activities. This evidence confirms that TER constitutes a significant component of GRP also along non-seismic faults.
Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Solo , Geologia , Poluentes Radioativos do Ar/análiseRESUMO
Charge density waves (CDWs) in the cuprate high-temperature superconductors have evoked much interest, yet their typical short-range nature has raised questions regarding the role of disorder. Here we report a resonant X-ray diffraction study of ZrTe[Formula: see text], a model CDW system, with focus on the influence of disorder. Near the CDW transition temperature, we observe two independent signals that arise concomitantly, only to become clearly separated in momentum while developing very different correlation lengths in the well-ordered state that is reached at a distinctly lower temperature. Anomalously slow dynamics of mesoscopic charge domains are further found near the transition temperature, in spite of the expected strong thermal fluctuations. Our observations signify the presence of distinct experimental fingerprints of pristine and disorder-perturbed CDWs. We discuss the latter also in the context of Friedel oscillations, which we argue might promote CDW formation via a self-amplifying process.
RESUMO
An in-vacuum double-phase-plate diffractometer for performing polarization scans combined with resonant X-ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M(4) edge on UO(2) enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.
RESUMO
This study provides taxonomic and distributional data of bryozoan species from the Ross Sea area, mainly around Terra Nova Bay, based on specimens curated at the Italian National Antarctic Museum (MNA, Section of Genoa). Bryozoan specimens were collected at 75 different sampling stations in the Ross Sea and in the Magellan Strait, in a bathymetric range of 18-711 meters, during 13 expeditions of the Italian National Antarctic Research Program (PNRA) conducted between 1988 and 2014. A total of 282 MNA vouchers corresponding to 311 specimens and 127 morphospecies have been identified and included in the present dataset. 62% of the species were already reported for the Terra Nova Bay area, where most of the Italian samples come from, with a 35% of samples representing new records classified at the specific level, and 3% classified at the genus level. These new additions increase to 124 the total number of species known to occur in Terra Nova Bay. Four 3D-models of Antarctic bryozoans from the Ross Sea are also presented and will be released for research and educational purposes on the Museum website.
RESUMO
Strongly correlated quantum solids are characterized by an inherently granular electronic fabric, with spatial patterns that can span multiple length scales in proximity to a critical point. Here, we use a resonant magnetic X-ray scattering nanoprobe with sub-100 nm spatial resolution to directly visualize the texture of antiferromagnetic domains in NdNiO3. Surprisingly, our measurements reveal a highly textured magnetic fabric, which we show to be robust and nonvolatile even after thermal erasure across its ordering temperature. The scale-free distribution of antiferromagnetic domains and its non-integral dimensionality point to a hitherto-unobserved magnetic fractal geometry in this system. These scale-invariant textures directly reflect the continuous nature of the magnetic transition and the proximity of this system to a critical point. The present study not only exposes the near-critical behavior in rare earth nickelates but also underscores the potential for X-ray scattering nanoprobes to image the multiscale signatures of criticality near a critical point.
RESUMO
Devices with locally-addressable and dynamically tunable optical properties underpin emerging technologies such as high-resolution reflective displays and dynamic holography. The optical properties of metals such as Y and Mg can be reversibly switched by hydrogen loading, and hydrogen-switched mirrors and plasmonic devices have been realized, but challenges remain to achieve electrical, localized and reversible control. Here we report a nanoscale solid-state proton switch that allows for electrical control of optical properties through electrochemical hydrogen gating. We demonstrate the generality and versatility of this approach by realizing tunability of a range of device characteristics including transmittance, interference color, and plasmonic resonance. We further discover and exploit a giant modulation of the effective refractive index of the gate dielectric. The simple gate structure permits device thickness down to ~20 nanometers, which can enable device scaling into the deep subwavelength regime, and has potential applications in addressable plasmonic devices and reconfigurable metamaterials.
RESUMO
This new dataset presents occurrence data for Porifera collected in the Ross Sea, mainly in the Terra Nova Bay area, and curated at the Italian National Antarctic Museum (MNA, section of Genoa). Specimens were collected in 331 different sampling stations at depths ranging from 17 to 1,100 meters in the framework of 17 different Italian Antarctic expeditions funded by the Italian National Antarctic Research Program (PNRA). A total of 807 specimens, belonging to 144 morphospecies (i.e., 95 taxa identified at species level and 49 classified at least at the genus level) is included in the dataset. Nearly half (45%) of the species reported here correspond to species already known for Terra Nova Bay. Out of the remaining 55% previously unknown records, under a third (~29%) were classified at the species level, while over a quarter (~26%) were ascribed to the genus level only and these would require further study. All vouchers are permanently curated at the MNA and are available for study to the scientific community. A 3D model of an uncommon species from the Ross Sea, i.e. Tethyopsisbrondstedi (Burton, 1929), is also presented and will be made available for outreach purposes.