Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(8): e3001769, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998195

RESUMO

We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.


Assuntos
Monkeypox virus , Mpox , Surtos de Doenças , Genômica , Humanos , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética
3.
J Infect Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874098

RESUMO

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Co-infection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G and K540E) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in two previously little-studied countries.

4.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500034

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Ampicilina , Cefotaxima , Aprendizado de Máquina , Nigéria
5.
Ann Hum Genet ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517013

RESUMO

Equity in access to genomic technologies, resources, and products remains a great challenge. This was evident especially during the coronavirus disease 2019 (COVID-19) pandemic when the majority of lower middle-income countries were unable to achieve at least 10% population vaccination coverage during initial COVID-19 vaccine rollouts, despite the rapid development of those vaccines. Sickle cell disease (SCD) is an inherited monogenic red blood cell disorder that affects hemoglobin, the protein that carries oxygen through the body. Globally, the African continent carries the highest burden of SCD with at least 240,000 children born each year with the disease. SCD has evolved from a treatable to a curable disease. Recently, the UK medical regulator approved its cure through clustered regularly interspaced short palindromic repeat (CRISPR)-based treatment, whereas the US Food and Drug Administration has equally approved two SCD gene therapies. This presents a remarkable opportunity to demonstrate equity in public health genomics. This CRISPR-based treatment is expensive and therefore, a need for an ambitious action to ensure that they are affordable and accessible where they are needed most and stand to save millions of lives.

6.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34591953

RESUMO

BACKGROUND: The two recent simultaneous developments of high-throughput sequencing and increased computational power have brought bioinformatics to the forefront as an important tool for effective and efficient biomedical research. Consequently, there have been multiple approaches to developing bioinformatics skills. In resource rich environments, it has been possible to develop and implement formal fully accredited graduate degree training programs in bioinformatics. In resource limited settings with a paucity of expert bioinformaticians, infrastructure and financial resources, the task has been approached by delivering short courses on bioinformatics-lasting only a few days to a couple of weeks. Alternatively, courses are offered online, usually over a period of a few months. These approaches are limited by both the lack of sustained in-person trainer-trainee interactions, which is a key part of quality mentorships and short durations which constrain the amount of learning that can be achieved. METHODS: Here, we pioneered and tested a bioinformatics training/mentorship model that effectively uses the available expertise and computational infrastructure to deliver an in-person hands-on skills training experience. This is done through a few physical lecture hours each week, guided personal coursework over the rest of the week, group discussions and continuous close mentorship and assessment of trainees over a period of 1 year. RESULTS: This model has now completed its third iteration at Makerere University and has successfully mentored trainees, who have progressed to a variety of viable career paths. CONCLUSIONS: One-year (intermediate) skills based in-person bioinformatics training and mentorships are viable, effective and particularly appropriate for resource limited settings.


Assuntos
Pesquisa Biomédica , Mentores , Pesquisa Biomédica/educação , Biologia Computacional/educação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Universidades
7.
BMC Genomics ; 24(1): 132, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941544

RESUMO

BACKGROUND: Vascular endothelial growth factor A (VEGFA) is a major angiogenic factor that plays an important role in the formation of blood vessels during embryonic development. VEGFA has been implicated in the pathophysiology of pre-eclampsia (PE), since pre-eclamptic women present with reduced levels of free circulating VEGFA. The 3' untranslated region (3'-UTR) of the VEGFA gene consists of elements that regulate the transcription and hence expression of the VEGFA protein in circulation. Hence it is suggested that variations thereof could underlie the reduced VEGFA levels observed in pre-eclamptic women. The purpose of this study was to investigate presence of the + 936C/T polymorphism, a common single nucleotide polymorphism (SNP) in the 3'-UTR of the VEGFA gene, and determine its association with PE among pregnant women in Uganda. RESULTS: There was no significant difference observed in the allele and genotype frequencies of the + 936C/T 3' UTR-VEGFA polymorphism between pre-eclamptic and normotensive pregnant women (P > 0.05). Additionally, there was no significant difference in the median plasma levels of free VEGFA among women with the wild type, CT and TT genotypes of the + 936C/T VEGFA polymorphism (median = 0.84 pg/mL (IQR = 0.39-1.41) Vs 1.05 (0.61-1.18) Vs 1.05 (1.05-1.05) respectively, p-value = 0.7161). CONCLUSIONS: These study findings indicate that the + 936C/T 3' UTR-VEGFA polymorphism had no significant association with increased susceptibility to PE among women in Uganda. Further studies with a larger sample size are recommended.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/genética , Gestantes , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Uganda , Genótipo , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Predisposição Genética para Doença
8.
Retrovirology ; 20(1): 8, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231494

RESUMO

BACKGROUND: Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups. RESULTS: The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death. CONCLUSION: CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.


Assuntos
Infecções por HIV , HIV-1 , Feminino , Humanos , Uganda , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Linfócitos T CD4-Positivos , Receptores CCR5/genética , Receptores CCR5/metabolismo
9.
Immunogenetics ; 75(3): 207-214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084013

RESUMO

In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Lactente , África , Variação Genética
10.
BMC Infect Dis ; 23(1): 654, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789281

RESUMO

Antimicrobial resistance (AMR) was a leading cause of death globally in 2019. Sadly, COVID-19 has exacerbated AMR, nonetheless, the process of developing new antibiotics remains very challenging. This urgently requires the adoption of alternative approaches to treat multi-drug-resistant bacterial infections. This editorial introduces the 'Bacteriophages against multi-drug resistant bacteria' collection launched at BMC Infectious Diseases which highlights progress towards using bacteriophages to tackle AMR.


Assuntos
Infecções Bacterianas , Bacteriófagos , COVID-19 , Humanos , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana
11.
BMC Infect Dis ; 23(1): 587, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679664

RESUMO

Escherichia coli significantly causes nosocomial infections and rampant spread of antimicrobial resistance (AMR). There is limited data on genomic characterization of extended-spectrum ß-lactamase (ESBL)-producing E. coli from African clinical settings. This hospital-based longitudinal study unraveled the genetic resistance elements in ESBL E. coli isolates from Uganda and Tanzania using whole-genome sequencing (WGS). A total of 142 ESBL multi-drug resistant E. coli bacterial isolates from both Tanzania and Uganda were sequenced and out of these, 36/57 (63.1%) and 67/85 (78.8%) originated from Uganda and Tanzania respectively. Mutations in RarD, yaaA and ybgl conferring resistances to chloramphenicol, peroxidase and quinolones were observed from Ugandan and Tanzanian isolates. We reported very high frequencies for blaCTX-M-15 with 11/18(61.1%), and blaCTX-M-27 with 12/23 (52.1%), blaTEM-1B with 13/23 (56.5%) of isolates originating from Uganda and Tanzania respectively all conferring resistance to Beta-lactam-penicillin inhibitors. We observed chloramphenicol resistance-conferring gene mdfA in 21/23 (91.3%) of Tanzanian isolates. Extraintestinal E. coli sequence type (ST) 131 accounted for 5/59 (8.4%) of Tanzanian isolates while enterotoxigenic E. coli ST656 was reported in 9/34 (26.4%) of Ugandan isolates. Virulence factors originating from Shigella dysenteriae Sd197 (gspC, gspD, gspE, gspF, gspG, gspF, gspH, gspI), Yersinia pestis CO92 (irp1, ybtU, ybtX, iucA), Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (csgF and csgG), and Pseudomonas aeruginosa PAO1 (flhA, fliG, fliM) were identified in these isolates. Overall, this study highlights a concerning prevalence and diversity of AMR-conferring elements shaping the genomic structure of multi-drug resistant E. coli in clinical settings in East Africa. It underscores the urgent need to strengthen infection-prevention controls and advocate for the routine use of WGS in national AMR surveillance and monitoring programs.Availability of WGS analysis pipeline: the rMAP source codes, installation, and implementation manual can free be accessed via https://github.com/GunzIvan28/rMAP .


Assuntos
Escherichia coli Enterotoxigênica , Humanos , Estudos Longitudinais , Virulência , Uganda/epidemiologia , Cloranfenicol , beta-Lactamases/genética
12.
BMC Genomics ; 23(1): 561, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931954

RESUMO

BACKGROUND: Mycobacterium tuberculosis presents several lineages each with distinct characteristics of evolutionary status, transmissibility, drug resistance, host interaction, latency, and vaccine efficacy. Whole genome sequencing (WGS) has emerged as a new diagnostic tool to reliably inform the occurrence of phylogenetic lineages of Mycobacterium tuberculosis and examine their relationship with patient demographic characteristics and multidrug-resistance development. METHODS: 191 Mycobacterium tuberculosis isolates obtained from a 2017/2018 Tanzanian drug resistance survey were sequenced on the Illumina Miseq platform at Supranational Tuberculosis Reference Laboratory in Uganda. Obtained fast-q files were imported into tools for resistance profiling and lineage inference (Kvarq v0.12.2, Mykrobe v0.8.1 and TBprofiler v3.0.5). Additionally for phylogenetic tree construction, RaxML-NG v1.0.3(25) was used to generate a maximum likelihood phylogeny with 800 bootstrap replicates. The resulting trees were plotted, annotated and visualized using ggtree v2.0.4 RESULTS: Most [172(90.0%)] of the isolates were from newly treated Pulmonary TB patients. Coinfection with HIV was observed in 33(17.3%) TB patients. Of the 191 isolates, 22(11.5%) were resistant to one or more commonly used first line anti-TB drugs (FLD), 9(4.7%) isolates were MDR-TB while 3(1.6%) were resistant to all the drugs. Of the 24 isolates with any resistance conferring mutations, 13(54.2%) and 10(41.6%) had mutations in genes associated with resistance to INH and RIF respectively. The findings also show four major lineages i.e. Lineage 3[81 (42.4%)], followed by Lineage 4 [74 (38.7%)], the Lineage 1 [23 (12.0%)] and Lineages 2 [13 (6.8%)] circulaing in Tanzania. CONCLUSION: The findings in this study show that Lineage 3 is the most prevalent lineage in Tanzania whereas drug resistant mutations were more frequent among isolates that belonged to Lineage 4.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Demografia , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Tanzânia/epidemiologia , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
Am J Hum Genet ; 102(5): 731-743, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706352

RESUMO

Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10-16) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.


Assuntos
População Negra/genética , Sequenciamento do Exoma , Variação Genética , Botsuana , Estudos de Coortes , Pool Gênico , Genética Populacional , Genoma Humano , Geografia , Humanos , Filogenia , Análise de Componente Principal
14.
Genome ; 64(5): 503-513, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33433259

RESUMO

Despite the poor genomics research capacity in Africa, efforts have been made to empower African scientists to get involved in genomics research, particularly that involving African populations. As part of the Human Heredity and Health in Africa (H3Africa) Consortium, an initiative was set to make genomics research in Africa an African endeavor and was developed through funding from the United States' National Institutes of Health Common Fund and the Wellcome Trust. H3Africa is intended to encourage a contemporary research approach by African investigators and to stimulate the study of genomic and environmental determinants of common diseases. The goal of these endeavors is to improve the health of African populations. To build capacity for bioinformatics and genomics research, organizations such as the African Society for Bioinformatics and Computational Biology have been established. In this article, we discuss the current status of the bioinformatics infrastructure in Africa as well as the training challenges and opportunities.


Assuntos
Biologia Computacional , Genômica , África , Educação , Educação a Distância , Genoma , Genômica/educação , Humanos , Internet , Pesquisa , Uganda , Sequenciamento Completo do Genoma
15.
Retrovirology ; 17(1): 19, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631377

RESUMO

BACKGROUND: Tripartite Motif Containing 5 alpha (TRIM5α), a restriction factor produced ubiquitously in cells and tissues of the body plays an important role in the immune response against HIV. TRIM5α targets the HIV capsid for proteosomal destruction. Cyclophilin A, an intracellular protein has also been reported to influence HIV infectivity in a cell-specific manner. Accordingly, variations in TRIM5α and Cyclophilin A genes have been documented to influence HIV-1 disease progression. However, these variations have not been documented among Elite controllers in Uganda and whether they play a role in viral suppression remains largely undocumented. Our study focused on identifying the variations in TRIM5α and Cyclophilin A genes among HIV-1 Elite controllers and non-controllers in Uganda. RESULTS: From the sequence analysis, the rs10838525 G > A mutation in exon 2 of TRIM5α was only found among elite controllers (30%) while the rs3824949 in the 5'UTR was seen among 25% of the non-controllers. In the Cyclophilin A promoter, rs6850 was seen among 62.5% of the non-controllers and only among 10% elite controllers. Furthermore, rs17860048 in the Cyclophillin A promoter was predominantly seen among elite controllers (30%) and 12.5% non-controllers. From gene expression analysis, we noted that the respective genes were generally elevated among elite controllers, however, this difference was not statistically significant (TRIM5α p = 0.6095; Cyclophilin A p = 0.6389). CONCLUSION: Variations in TRIM5α and Cyclophillin A promoter may influence HIV viral suppression. The rs10838525 SNP in TRIM5α may contribute to viral suppression among HIV-1 elite controllers. The rs6850 in the cyclophillin A gene may be responsible for HIV-1 rapid progression among HIV-1 non-controllers. These SNPs should be investigated mechanistically to determine their precise role in HIV-1 viral suppression.


Assuntos
Infecções por HIV/genética , Peptidilprolil Isomerase/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Fatores de Restrição Antivirais , Estudos Transversais , Feminino , Expressão Gênica , Variação Genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Uganda
17.
BMC Infect Dis ; 19(1): 853, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619192

RESUMO

BACKGROUND: Between January 2015 and July 2017, we investigated the frequency of carbapenem resistant Acinetobacter baumannii (CRAB) and carbapenem resistant Pseudomonas aeruginosa (CRPA) at the Mulago Hospital intensive care unit (ICU) in Kampala, Uganda. Carbapenemase production and carbapenemase gene carriage among CRAB and CRPA were determined; mobility potential of carbapenemase genes via horizontal gene transfer processes was also studied. METHODS: Clinical specimens from 9269 patients were processed for isolation of CRAB and CRPA. Drug susceptibility testing was performed with the disk diffusion method. Carriage of carbapenemase genes and class 1 integrons was determined by PCR. Conjugation experiments that involved blaVIM positive CRAB/CRPA (donors) and sodium azide resistant Escherichia coli J53 (recipient) were performed. RESULTS: The 9269 specimens processed yielded 1077 and 488 isolates of Acinetobacter baumannii and Pseudomonas aeruginosa, respectively. Of these, 2.7% (29/1077) and 7.4% (36/488) were confirmed to be CRAB and CRPA respectively, but 46 were available for analysis (21 CRAB and 25 CRPA). Majority of specimens yielding CRAB and CRPA were from the ICU (78%) while 20 and 2% were from the ENT (Ear Nose & Throat) Department and the Burns Unit, respectively. Carbapenemase assays performed with the MHT assay showed that 40 and 33% of CRPA and CRAB isolates respectively, were carbapenemase producers. Also, 72 and 48% of CRPA and CRAB isolates respectively, were metallo-beta-lactamase producers. All the carbapenemase producing isolates were multidrug resistant but susceptible to colistin. blaVIM was the most prevalent carbapenemase gene, and it was detected in all CRAB and CRPA isolates while blaOXA-23 and blaOXA-24 were detected in 29 and 24% of CRAB isolates, respectively. Co-carriage of blaOXA-23 and blaOXA-24 occurred in 14% of CRAB isolates. Moreover, 63% of the study isolates carried class 1 integrons; of these 31% successfully transferred blaVIM to E. coli J53. CONCLUSIONS: CRAB and CRPA prevalence at the Mulago Hospital ICU is relatively low but carbapenemase genes especially blaVIM and blaOXA-23 are prevalent among them. This requires strengthening of infection control practices to curb selection and transmission of these strains in the hospital.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii , Infecção Hospitalar/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Resistência beta-Lactâmica , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Uganda , beta-Lactamases
18.
BMC Infect Dis ; 18(1): 68, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409447

RESUMO

BACKGROUND: Nosocomial infections are a major setback in the healthcare delivery system especially in developing countries due to the limited resources. The roles played by medical care equipment and work surfaces in the transmission of such organisms have inevitably contributed to the elevated mortality, morbidity and antibiotic resistances. METHODS: A total 138 samples were collected during the study from Kawolo general hospital. Swab samples were collected from various work surfaces and fomites which consisted of; beds, sink taps, infusion stands, switches, work tables and scissors. Cultures were done and the susceptibility patterns of the isolates were determined using Kirby Bauer disc diffusion method. Data was analyzed using Stata 13 and Microsoft Excel 2013 packages. RESULTS: A total of 44.2% (61/138) of the collected swab specimens represented the overall bacterial contamination of the sampled articles. Staphylococcus aureus and Klebsiella pneumoniae accounted for the highest bacterial contaminants constituting of 75.4% (46/61) and 11.5% (7/61) respectively. Infusion stands and patient beds were found to have the highest bacterial contamination levels both constituting 19.67% (12/61). The highest degree of transmission of organisms to patients was found to be statistically significant for patient beds with OR: 20.1 and P-value 8X10- 4. Vancomycin, ceftriaxone and ciprofloxacin were the most effective antibiotics with 100%, 80% and 80% sensitivity patterns among the isolates respectively. Multi-drug resistant (MDR) Staphylococcus aureus accounted for 52% (24/46) with 4% (1/24) classified as a possible extensively drug resistant (XDR) whereas Gram negative isolates had 27% (4/15) MDR strains out of which 50%(2/4) were classified as possible pan-drug resistant (PDR). CONCLUSION: The high prevalence of bacterial contaminants in the hospital work environment is an indicator of poor or ineffective decontamination. The study findings reiterate the necessity to formulate drug usage policies and re-examine effectiveness of decontamination and sterilization practices within Kawolo general hospital. We also recommend installation of a sound Microbiology unit at the hospital to take on susceptibility testing to check on the empirical use of antibiotics as a way of reducing the rampant elevations in drug resistances.


Assuntos
Klebsiella pneumoniae/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Equipamentos Cirúrgicos/microbiologia , Antibacterianos/farmacologia , Roupas de Cama, Mesa e Banho/microbiologia , Ceftriaxona/farmacologia , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Hospitais Gerais , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mesas Cirúrgicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Vestimenta Cirúrgica/microbiologia , Uganda , Vancomicina/farmacologia
19.
Can J Infect Dis Med Microbiol ; 2018: 1875217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755620

RESUMO

HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers.

20.
Genet Med ; 19(7): 826-833, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28383545

RESUMO

PURPOSE: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. BACKGROUND: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. METHODS: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. CONCLUSION: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.


Assuntos
Educação de Pós-Graduação/métodos , Educação/métodos , Genômica/educação , Pesquisa Biomédica/educação , Pesquisa Biomédica/métodos , Botsuana , Biologia Computacional/educação , Currículo , Feminino , Humanos , Cooperação Internacional , Masculino , Estudantes , Uganda , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA