Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36433277

RESUMO

This paper was concerned with the current level of progress towards the development of chipless radio frequency identification (RFID) sensors that are capable of sensing strain and temperature. More specifically, it was interested in the possibility that the resulting devices could be used as a passive wireless structural health monitoring (SHM) sensor technology that could be printed in situ. This work contains the development and performance characterization results for both novel strain and novel temperature sensor designs with resulting sensitivities of 9.77 MHz/%ε and 0.88 MHz/°C, respectively. Furthermore, a detailed discussion on the interrogation system required to meet the relevant aerospace sensing requirements was also discussed, and several methods were explored to enhance the multi-sensor support capabilities of this technology.


Assuntos
Dispositivo de Identificação por Radiofrequência , Temperatura , Tecnologia sem Fio , Primeiros Socorros , Tecnologia
2.
Sensors (Basel) ; 21(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577431

RESUMO

This paper contains two main areas of research: First, this work outlines a novel, highly sensitive strain sensor design that should support various levels of deformation, depending on the substrate type used. Physical implementations in this work have focused on proving its large deformation capabilities, and simulations have been used to assess its more general electromagnetic response. The other part of this paper focusses on exploring other effects that will impact the sensing of strain of resolutions below 10 µÎµ, which is a capability achieved by other aerospace-grade strain sensor technologies. These effects are limited to mechanical swelling and sensor orientation in the azimuth and elevation planes, as these appear to be unexplored and highly relevant issues to the topic of chipless RFID-based strain sensing. From this exploration, it is apparent that the effects of mechanical swelling and sensor orientation (amongst others) will need to be addressed in any real-life implementation of the sensor, requiring a strain resolution below 10 µÎµ.


Assuntos
Dispositivo de Identificação por Radiofrequência
3.
Sensors (Basel) ; 19(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698787

RESUMO

Chipless Radio Frequency Identification (RFID) has been used in a variety of remote sensing applications and is currently a hot research topic. To date, there have been a large number of chipless RFID tags developed in both academia and in industry that boast a large variation in design characteristics. This review paper sets out to discuss the various design aspects needed in a chipless RFID sensor. Such aspects include: (1) Addressing strategies to allow for unique identification of the tag, (2) Sensing mechanisms used to allow for impedance-based response signal modulation and (3) Sensing materials to introduce the desired impedance change when under the influence of the target stimulus. From the tabular comparison of the various sensing and addressing techniques, it is concluded that although many sensors provide adequate performance characteristics, more work is needed to ensure that this technology is capable/robust enough to operate in many of the applications it has been earmarked for.

4.
Micromachines (Basel) ; 11(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233732

RESUMO

To date, no printable chipless Radio Frequency Identification (RFID) sensor-related publications in the current literature discuss the possibility of thermocouple integration, particularly for the use in extreme environments. Furthermore, the effects of a time-dependent stimulus on the scattering parameters of a chipless RFID have never been discussed in the known literature. This work includes a review of possible methods to achieve this goal and the design and characterization of a Barium Strontium Titanate (BST) based VHF/UHF voltage sensing circuit. Proof-of-concept thermocouple integration was attempted, and subsequent testing was performed using a signal generator. These subsequent tests involved applying ramp and sinusoid voltage waveforms to the circuit and the characteristics of these signals are largely extracted from the scattering response. Overall conclusions of this paper are that thermocouple integration into chipless RFID technology is still a significant challenge and further work is needed to identify methods of thermocouple integration. With that being said, the developed circuit shows promise as being capable of being configured into a conventional chipless RFID DC voltage sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA