Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 71(16): 6074-98, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16872191

RESUMO

In principle, the absolute configuration (AC) of a chiral molecule can be deduced from its optical rotation (OR) and/or its electronic circular dichroism (ECD). In practice, this requires reliable methodologies for predicting OR and ECD. The recent application of ab initio time-dependent density functional theory (TDDFT) to the calculation of transparent spectral region OR and ECD has greatly enhanced the reliability with which these phenomena can be predicted. TDDFT calculations of OR and ECD are being increasingly utilized in determining ACs. Nevertheless, such calculations are not perfect, and as a result, ACs determined are not 100% reliable. In this paper, we examine the reliability of the TDDFT methods in the case of chiral alkenes. Sodium d line specific rotations, [alpha]D, are predicted for 26 conformationally rigid alkenes of known AC, ranging in size from 5 to 20 C atoms, and with [alpha]D values in the range of 0-500. The mean absolute deviation of predicted [alpha]D values from experimental values is 28.7. With one exception, beta-pinene, the signs of [alpha]D are correctly predicted. Errors in calculated [alpha]D values are approximately random. Our results define a "zone of indeterminacy" within which calculated [alpha]D values cannot be used to determine ACs with >95% confidence. TDDFT ECD spectra are predicted for eight of the alkenes and compared to experimental spectra. Agreement ranges from modestly good to poor, leading to the conclusion that TDDFT calculations of ECD spectra are not yet of sufficient accuracy to routinely provide highly reliable ACs. TDDFT OR calculations for two conformationally flexible alkenes, 3-tert-butylcyclohexene and trans-4-carene, are also reported. For the former, predicted rotations are incorrect in sign over the range 589-365 nm. It is possible that the AC of this molecule has been incorrectly assigned.

2.
J Nat Prod ; 69(7): 1055-64, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16872144

RESUMO

The determination of the absolute configurations (ACs) of chiral molecules using the chiroptical techniques of optical rotation (OR), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) has been revolutionized by the development of density functional theory (DFT) methods for the prediction of these properties. Here, we demonstrate the significance of these advances for the stereochemical characterization of natural products. Time-dependent DFT (TDDFT) calculations of the specific rotations, [alpha](D), of four cytotoxic natural products, quadrone (1), suberosenone (2), suberosanone (3), and suberosenol A acetate (4), are used to assign their ACs. TDDFT calculations of the ECD of 1 are used to assign its AC. The VCD spectrum of 1 is reported and also used, together with DFT calculations, to assign its AC. The ACs of 1 derived from its [alpha](D), ECD, and VCD are identical and in agreement with the AC previously determined via total synthesis. The previously undetermined ACs of 2-4, derived from their [alpha](D) values, have absolute configurations of their tricyclic cores identical to that of 1. Further studies of the ACs of these molecules using ECD and, especially, VCD are recommended to establish more definitively this finding. Our studies of the OR, ECD, and VCD of quadrone are the first to utilize DFT calculations of all three properties for the determination of the AC of a chiral natural product molecule.


Assuntos
Antozoários/química , Antineoplásicos/química , Produtos Biológicos/química , Sesquiterpenos/química , Animais , Antineoplásicos/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Dicroísmo Circular , Estrutura Molecular , Rotação Ocular , Sesquiterpenos/farmacologia
3.
Chirality ; 17 Suppl: S52-64, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15747317

RESUMO

The absolute configuration (AC) of a chiral molecule can be determined via calculation of its specific rotation. Currently, the latter is most accurately carried out using the TDDFT/GIAO methodology. Here we examine the reliability of this methodology in determining ACs of molecules with small specific rotations. We report TDDFT/GIAO B3LYP/aug-cc-pVDZ//B3LYP/6-31G* calculations of the sodium D line specific rotations, [alpha]D, of 65 conformationally rigid chiral molecules whose experimental [alpha]D values are small (<100). The RMS deviations, sigma, of calculated and experimental [alpha]D values is 28.9. The distribution of deviations is approximately Gaussian, i.e., random. For eight molecules, more than 10% of the set, the sign of the predicted [alpha]D is incorrect. In determining an AC of a rigid molecule from [alpha]D with 95% confidence, the calculated [alpha]D value must lie within +/-2sigma of the experimental [alpha]D for one, but not both, of the possible ACs. For the 65 molecules of this study +/-2sigma is 57.8. For conformationally flexible molecules, the error bar is +/- >57.8.

4.
J Org Chem ; 70(10): 3903-13, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15876078

RESUMO

[reaction: see text] The Baeyer-Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione, 1, can lead to four keto-lactone products, 2a-d. A single isomer is obtained experimentally. We have used IR and VCD spectroscopies to identify the structure of this product. DFT calculations of the IR and VCD spectra of 2a-d show unambiguously that the experimental product is (+)-(1R,6R)-2a, and not the expected product 2b. NMR studies, including comparison of DFT and experimental 1H and 13C spectra, support this conclusion. This work provides the first example of the use of VCD spectroscopy to discriminate between structural isomers of a chiral molecule. The specific rotation of (+)-(1R,6R)-2a, predicted using TDDFT methods, is negative demonstrating that absolute configurations determined from TDDFT calculations of specific rotations are not 100% reliable.

5.
J Org Chem ; 69(25): 8709-17, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15575747

RESUMO

The recently developed Gauge-Invariant (Including) Atomic Orbital (GIAO) based Time-Dependent Density Functional Theory (TDDFT) methodology for the calculation of transparent spectral region optical rotations of chiral molecules provides a new approach to the determination of absolute configurations. Here, we discuss the application of the TDDFT/GIAO methodology to chiral alkanes. We report B3LYP/aug-cc-pVDZ calculations of the specific rotations of the 22 chiral alkanes, 2-23, of well-established Absolute Configuration. The average absolute deviation of calculated and experimental [alpha](D) values for molecules 2-22 is 24.8. In two of the molecules 2-23, trans-pinane, 10, and endo-isocamphane, 13, the sign of [alpha](D) is incorrectly predicted. Our results demonstrate that absolute configurations of alkanes can be reliably assigned by using B3LYP/aug-cc-pVDZ TDDFT/GIAO calculations if, but only if, [alpha](D) is significantly greater than 25. In the case of (-)-anti-trans-anti-trans-anti-trans-perhydrotriphenylene, 1, [alpha](D) is -93 and TDDFT/GIAO calculations reliably lead to the absolute configuration R(-).

6.
J Org Chem ; 69(6): 1948-58, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15058939

RESUMO

The concerted use of ab initio time-dependent density functional theory (TDDFT) calculations of transparent spectral region optical rotation and of circular dichroism has recently become practicable, permitting the concerted use of transparent spectral region optical rotation and circular dichroism in determining the absolute configurations of chiral molecules. Here, we report concerted TDDFT calculations of the transparent spectral region specific rotations and of the circular dichroism spectra originating in n --> pi C=O group excitations of four bicyclo[3.3.1]nonane diones, 1-4. Comparison to experiment yields absolute configurations for 1-4. For each dione, specific rotations and circular dichroism spectra give identical absolute configurations. Our results are consistent with previous work, with the exception of the Octant Rule-derived absolute configuration of the 2,9-dione.

7.
J Am Chem Soc ; 126(24): 7514-21, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15198598

RESUMO

The technique of time-dependent density functional theory (TDDFT) has very recently been applied to the calculation of both transparent spectral region optical rotations and electronic circular dichroism (CD). Here, we report the concerted application of the new methodologies to the determination of the absolute configuration (AC) of [3(2)](1,4)barrelenophanedicarbonitrile, 1, the first optically active barrelenophane. 1 is conformationally flexible: the two three-carbon bridges of 1 can each exhibit two conformations, leading to three inequivalent conformations of 1: a, b, and c. Conformational structures and energies are predicted using DFT at the B3LYP/6-31G level. Comparison of the calculated structures to structures obtained via X-ray crystallography of (+)-1 shows that (remarkably) all three conformations a-c are simultaneously present in crystalline (+)-1. The sodium D line specific rotations, [alpha](D), and CD spectra of a-c are calculated using TDDFT at the B3LYP/aug-cc-pVDZ level. Comparison of the conformationally averaged specific rotation and CD spectrum to the experimental data of Matsuda-Sentou and Shinmyozu leads to the AC 9S,12S(+)/9R,12R(-). The same AC is obtained both from [alpha](D) and from the CD, strongly supporting its reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA