Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 380(3): 143-152, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34893551

RESUMO

Dopamine (DA) plays a key role in several central functions including cognition, motor activity, and wakefulness. Although efforts to develop dopamine receptor 1 (D1) agonists have been challenging, a positive allosteric modulator represents an attractive approach with potential better drug-like properties. Our previous study demonstrated an acceptable safety and tolerability profile of the dopamine receptor 1 positive allosteric modulator (D1PAM) mevidalen (LY3154207) in single and multiple ascending dose studies in healthy volunteers (Wilbraham et al., 2021). Herein, we describe the effects of mevidalen on sleep and wakefulness in humanized dopamine receptor 1 (hD1) mice and in sleep-deprived healthy male volunteers. Mevidalen enhanced wakefulness (latency to fall asleep) in the hD1 mouse in a dose dependent [3-100 mg/kg, orally (PO)] fashion when measured during the light (zeitgeber time 5) and predominantly inactive phase. Mevidalen promoted wakefulness in mice after prior sleep deprivation and delayed sleep onset by 5.5- and 15.2-fold compared with vehicle-treated animals, after the 20 and 60 mg/kg PO doses, respectively, when compared with vehicle-treated animals. In humans, mevidalen demonstrated a dose-dependent increase in latency to sleep onset as measured by the multiple sleep latency test and all doses (15, 30, and 75 mg) separated from placebo at the first 2-hour postdose time point with a circadian effect at the 6-hour postdose time point. Sleep wakefulness should be considered a translational biomarker for the dopamine receptor 1 positive allosteric modulator mechanism. SIGNIFICANCE STATEMENT: This is the first translational study describing the effects of a selective dopamine receptor 1 positive allosteric modulator (D1PAM) on sleep and wakefulness in the human dopamine receptor 1 mouse and in sleep-deprived healthy male volunteers. In both species, drug exposure correlated with sleep latency, supporting the use of sleep-wake activity as a translational central biomarker for D1PAM. Wake-promoting effects of D1PAMs may offer therapeutic opportunities in several conditions, including sleep disorders and excessive daytime sleepiness related to neurodegenerative disorders.


Assuntos
Fármacos Neuroprotetores , Vigília , Animais , Voluntários Saudáveis , Humanos , Isoquinolinas , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Receptores de Dopamina D1 , Sono/fisiologia
2.
Proc Natl Acad Sci U S A ; 116(7): 2733-2742, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683720

RESUMO

One of sleep's putative functions is mediation of adaptation to waking experiences. Chronic stress is a common waking experience; however, which specific aspect of sleep is most responsive, and how sleep changes relate to behavioral disturbances and molecular correlates remain unknown. We quantified sleep, physical, endocrine, and behavioral variables, as well as the brain and blood transcriptome in mice exposed to 9 weeks of unpredictable chronic mild stress (UCMS). Comparing 46 phenotypic variables revealed that rapid-eye-movement sleep (REMS), corticosterone regulation, and coat state were most responsive to UCMS. REMS theta oscillations were enhanced, whereas delta oscillations in non-REMS were unaffected. Transcripts affected by UCMS in the prefrontal cortex, hippocampus, hypothalamus, and blood were associated with inflammatory and immune responses. A machine-learning approach controlling for unspecific UCMS effects identified transcriptomic predictor sets for REMS parameters that were enriched in 193 pathways, including some involved in stem cells, immune response, and apoptosis and survival. Only three pathways were enriched in predictor sets for non-REMS. Transcriptomic predictor sets for variation in REMS continuity and theta activity shared many pathways with corticosterone regulation, in particular pathways implicated in apoptosis and survival, including mitochondrial apoptotic machinery. Predictor sets for REMS and anhedonia shared pathways involved in oxidative stress, cell proliferation, and apoptosis. These data identify REMS as a core and early element of the response to chronic stress, and identify apoptosis and survival pathways as a putative mechanism by which REMS may mediate the response to stressful waking experiences.


Assuntos
Apoptose , Comportamento Animal , Corticosterona/metabolismo , Sono REM , Estresse Psicológico , Animais , Doença Crônica , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Transcriptoma , Vigília/fisiologia
3.
Neuropharmacology ; 140: 246-259, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005976

RESUMO

Group II metabotropic glutamate receptors (mGluR2 and mGluR3) are implicated in a number of psychiatric disorders. They also control sleep-wake architecture and may offer novel therapeutic targets. However, the roles of the mGluR2 versus mGluR3 subtypes are not well understood. Here, we have taken advantage of the recently described mutant strain of Han Wistar rats, which do not express mGluR2 receptors, to investigate behavioural, sleep and EEG responses to mGluR2/3 ligands. The mGluR2/3 agonist, LY354740 (10 mg/kg), reversed amphetamine- and phencyclidine-induced locomotion and rearing behaviours in control Wistar but not in mGluR2 lacking Han Wistar rats. In control Wistar but not in Han Wistar rats the mGluR2/3 agonist LY379268 (3 & 10 mg/kg) induced REM sleep suppression with dose-dependent effects on wake and NREM sleep. By contrast, the mGluR2/3 antagonist LY3020371 (3 & 10 mg/kg) had wake-promoting effects in both rat strains, albeit smaller in the mGluR2-lacking Han Wistar rats, indicating both mGluR2 and mGluR3-mediated effects on wakefulness. LY3020371 enhanced wake cortical oscillations in the theta (4-9 Hz) and gamma (30-80 Hz) range in both Wistar and Han Wistar rat strains, whereas LY379268 reduced theta and gamma oscillations in control Wistar rats, with minimal effects in Han Wistar rats. Together these studies illustrate the significant contribution of mGluR2 to the antipsychotic-like, sleep and EEG effects of drugs acting on group II mGluRs. However, we also provide evidence of a role for mGluR3 activity in the control of sleep and wake cortical theta and gamma oscillations.


Assuntos
Antipsicóticos/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Aminoácidos/farmacologia , Anfetamina/antagonistas & inibidores , Anfetamina/farmacologia , Animais , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cicloexanos/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Mutação , Fenciclidina/antagonistas & inibidores , Fenciclidina/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Sono/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
4.
Neuropharmacology ; 64: 224-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22884720

RESUMO

The demonstrated functional interaction of metabotropic glutamate 5 (mGlu5) receptors with N-methyl-d-aspartate (NMDA) receptors has prompted speculation that their activation may offer a potential treatment for aspects of schizophrenia. Development of selective mGlu5 agonists has been difficult, but several different positive allosteric modulator (PAM) molecules have now been identified. This study describes two novel mGlu5 PAMs, LSN2463359 (N-(1-methylethyl)-5-(pyridin-4-ylethynyl)pyridine-2-carboxamide) and LSN2814617 [(7S)-3-tert-butyl-7-[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine], which are useful tools for this field of research. Both compounds are potent and selective potentiators of human and rat mGlu5 receptors in vitro, displaying curve shift ratios of two to three fold in the concentration-response relationship to glutamate or the glutamate receptor agonist, DHPG, with no detectable intrinsic agonist properties. Both compounds displaced the mGlu5 receptor antagonist radioligand, [³H]MPEP in vitro and, following oral administration reached brain concentrations sufficient to occupy hippocampal mGlu5 receptors as measured in vivo by dose-dependent displacement from the hippocampus of intravenously administered MPEPy. In vivo EEG studies demonstrated that these mGlu5 PAMs have marked wake-promoting properties but little in the way of rebound hypersomnolence. In contrast, the previously described mGlu5 PAMs CDPPB and ADX47273 showed relatively poor evidence of in vivo target engagement in either receptor occupancy assays or EEG disturbance. Wake-promoting doses of LSN2463359 and LSN2814617 attenuated deficits in performance induced by the competitive NMDA receptor antagonist SDZ 220,581 in two tests of operant behaviour: the variable interval 30 s task and the DMTP task. These effects were lost if the dose of either compound extended into the range which disrupted performance in the baseline DMTP task. However, the improvements in response accuracy induced by the mGlu5 potentiators in SDZ 220,581-treated rats were not delay-dependent and, therefore, perhaps more likely reflected optimization of general arousal than specific beneficial effects on discrete cognitive processes. The systematic profiling of LSN2463359 and LSN2814617 alongside other previously described molecules will help determine more precisely how mGlu5 potentiator pharmacology might provide therapeutic benefit. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Drogas em Investigação/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Esquizofrenia/tratamento farmacológico , Regulação Alostérica , Animais , Nível de Alerta/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Drogas em Investigação/efeitos adversos , Drogas em Investigação/metabolismo , Drogas em Investigação/uso terapêutico , Embrião de Mamíferos/citologia , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Agonistas de Aminoácidos Excitatórios/metabolismo , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Humanos , Masculino , Neurônios/citologia , Neurônios/metabolismo , Nootrópicos/efeitos adversos , Nootrópicos/metabolismo , Nootrópicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fases do Sono/efeitos dos fármacos , Distribuição Tecidual
5.
Neuron ; 76(3): 526-33, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23141065

RESUMO

Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases.


Assuntos
Modelos Animais de Doenças , Hipocampo/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Esquizofrenia/fisiopatologia , Sono/fisiologia , Animais , Eletroencefalografia/métodos , Feminino , Vias Neurais/crescimento & desenvolvimento , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA